

TEST REPORT

Reference No	` ني	WTF21F11118328F
Applicant	-in	Mid Ocean Brands B.V.
Address	WALT	7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong
Manufacturer	24	106716
Sample Name		Set of 3 RPET mesh bags in RPET pouch
Model No	et	MO9898
Test Requested	: 1	In accordance with Regulation (EU) No 10/2011 with amendments and Regulation (EC) No 1935/2004.
Test Conclusion	100	Please refer to next pages for details
Date of Receipt sample	N. Lie	2021-11-02
Date of Test	SEX.	2021-11-02 to 2021-11-09
Date of Issue	:	2021-11-09
Test Result	7/	Please refer to next page (s)

Remarks:

The results shown in this test report refer only to the sample(s) tested; this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

If the report is not stamped with the accreditation recognized seal, it will only be used for scientific research, education, and internal quality control activities, and is not used for the purpose of issuing supporting data to the society.

Prepared By: Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City,
Chencun, Shunde District, Foshan, Guangdong, China
Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Selected test(s) as requested by applicant

Compiled by: Approved by:

Abby Zheu
Abby Zhoù Project Engineer

Dino.Zhang / Technical Manager

Test Results:

1. Overall Migration Test

Let let	TEX SEX NO	Result	(mg/dm ²)	W. 24	74 J.
Food Simulant	Test Condition	Test Condition 1 st Migration		LOQ (mg/dm²)	Limit (mg/dm ²)
ALTER MALIER MA	LIET WIFE MILES MULTER MULTER	No.1	No.2	(g/d/	
3% Acetic Acid	70°C for 2 hours	ND	ND	3	- J
50% Ethanol	70°C for 2 hours	ND	ND	3 112	mr m

Who will be the total		Result (r	mg/dm²)	Tr. Mrr.	Limit (mg/dm²)
Food Simulant	Food Simulant Test Condition		gration	LOQ (mg/dm²)	
TEX TEX SUEL SUITER SUITER	No.1	No.2			
3% Acetic Acid	70°C for 2 hours	ND	ND ND	3 4	20, 70,
50% Ethanol	70°C for 2 hours	ND	ND ND	25 CE 3 25 CE	White-Mile

MULL MULL	ing the thin	Result (mg/dm²)	TER WALTER W		
Food Simulant	Test Condition	3 rd Migration		LOQ (mg/dm²)	Limit (mg/dm²)	
in in		No.1	No.2	in in		
3% Acetic Acid	70°C for 2 hours	ND	ND	and 3 and	10	
50% Ethanol	70°C for 2 hours	ND	ND	3 75	10	

Note:

- 1. Test method: With reference to BS EN 1186-1: 2002 and BS EN 1186-3: 2002.
- 2. "mg/dm²" = milligram per square decimetre
- 3. "°C" = Celsius degree
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752, (EU)2019/37 and (EU) 2020/1245.

2. Specific Migration of heavy metal

men me me m	Result(mg/kg)	EL MITEL MAITE	Limit (mg/kg)	
Test Items	1 st Mig	ration	LOQ (mg/kg)		
Mir Mr. Mr. M.	No.1	No.2	WALTE WALTE	WILL MULL	
Specific migration of Nickel	ND	ND	0.01	TEK INTEK	
Specific migration of Aluminium	ND ND	ND	0.1	t 3+ .	
Specific migration of Barium	ND	ND	0.1	Mr Mr.	
Specific migration of Cobalt	ND	ND	0.01	MITEN MALTE	
Specific migration of Copper	ND	ND	0.1	at - At	
Specific migration of Iron	ND	ND	0.1	r mr	
Specific migration of Lithium	ND	ND	0.01	EK WITEE W	
Specific migration of Manganese	ND	ND	0.01	- 10 S	
Specific migration of Zinc	ND -	ND ND	0.1	Aug - Aug	
Specific migration of Antimony*	ND	ND	0.01	INLIER WALTER	
Specific migration of Arsenic*	ND S	ND	0.01	Not detected	
Specific migration of Cadmium*	ND TO	ND	0.002	Not detected	
Specific migration of Chromium*	ND	ND	0.01	Not detected	
Specific migration of Mercury*	ND	ND	0.01	Not detected	
Specific migration of Lead*	- ND	ND ND	0.01	Not detected	
Specific migration of Europeum*	ND	ND ND	0.02	NITE WALLE	
Specific migration of Gadolinium*	ND	ND	0.02	et Jet	
Specific migration of Lanthanum*	ND	ND N	0.02	'', 'A	
Specific migration of Terbium*	ND	ND	0.02	WALTER WAL	

in which must any and a	Result	(mg/kg)	A WILL MILE	Limit (mg/kg)
Test Items	2 nd M	igration	LOQ (mg/kg)	
mer mer my my	No.1	No.2	MALTE WALTE	Will Mur
Specific migration of Nickel	MD WELL	ND	0.01	TEK WELEK
Specific migration of Aluminium	ND	ND	0.1	t 75-
Specific migration of Barium	ND	ND	0.1	MUL MUL
Specific migration of Cobalt	ND	ND	0.01	MITE MITE
Specific migration of Copper	ND	ND	0.1	10th 10th
Specific migration of Iron	ND	ND	0.1	r mr
Specific migration of Lithium	ND	ND	0.01	EX WITER ON
Specific migration of Manganese	ND	ND	0.01	, J. J.
Specific migration of Zinc	ND	ND ND	0.1	Mrs Mrs.
Specific migration of Antimony*	ND	ND	0.01	INLIER WALTER
Specific migration of Arsenic*	ND	ND	0.01	Not detected
Specific migration of Cadmium*	ND	ND ND	0.002	Not detected
Specific migration of Chromium*	ND	ND	0.01	Not detected
Specific migration of Mercury*	ND	ND	0.01	Not detected
Specific migration of Lead*	ND ND	ND NE	0.01	Not detected
Specific migration of Europeum*	ND	ND ND	0.02	ALTE WALLE
Specific migration of Gadolinium*	ND	ND	0.02	EK JEK
Specific migration of Lanthanum*	ND	ND W	0.02	201-
Specific migration of Terbium*	ND	ND S	0.02	white whi

Page 5 of 11

Reference No.: WTF21F11118328F

men me me m	Result(mg/kg)	EK MITER WALTER	MULT MULL	
Test Items	3 rd Mig	gration	LOQ (mg/kg)	Limit (mg/kg)	
mer my my	No.1	No.2	WILLEY WALLE	WILL MULL	
Specific migration of Nickel	ND	ND	0.01	0.02	
Specific migration of Aluminium	ND	ND	0.1	1_	
Specific migration of Barium	ND	ND	0.1	unt 1 un	
Specific migration of Cobalt	ND	ND	0.01	0.05	
Specific migration of Copper	ND	ND	0.1	5	
Specific migration of Iron	ND	ND	0.1	48	
Specific migration of Lithium	ND	ND	0.01	0.6	
Specific migration of Manganese	ND	ND	0.01	0.6	
Specific migration of Zinc	ND -	ND	0.1	5	
Specific migration of Antimony*	ND	ND	0.01	0.04	
Specific migration of Arsenic*	ND	ND	0.01	Not detected	
Specific migration of Cadmium*	ND CO	ND	0.002	Not detected	
Specific migration of Chromium*	ND	ND	0.01	Not detected	
Specific migration of Mercury*	ND	ND	0.01	Not detected	
Specific migration of Lead*	ND ND	ND ND	0.01	Not detected	
Specific migration of Europeum*	ND	ND ND	0.02	NITE WALTER	
Specific migration of Gadolinium*	ND	ND	0.02	Sum :0.05	
Specific migration of Lanthanum*	ND	ND	0.02	Sum<0.05	
Specific migration of Terbium*	ND	ND	0.02	MILITE WAY	

Note:

- 1. Test Method: With reference to BS EN 13130-1: 2004, sample preparation in 3% acetic acid at 40°C for 2 hours, analysis was performed by ICP-OES and ICP-MS.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.
- 6. The testing item marked with '*' does not been accredited by CNAS.

3. Specific Migration of Primary Aromatic Amines

MULTE MILL MILL MILL MICH	Result	(mg/kg)	LIEK WILLER WILL	er white white	
Test Item	1 st Migration		LOQ (mg/kg)	Limit (mg/kg)	
	No.1	No.2	MULL AUT	Mr. M.	
Migration of Primary aromatic amines	ND	ND	0.002	Write Murie M	

Test Item	10 10	~	(mg/kg) gration	LOQ (mg/kg)	Limit (mg/kg)	
THE STATE OF THE S	No.1	7 2	No.2			
Migration of Primary aromatic amines	ND	MILI	ND	0.002	m in a	

ex rex rex right street	Result	(mg/kg)	11, 21, 21	et et et	
Test Item	3 rd Mi	gration	LOQ (mg/kg)	Limit (mg/kg)	
MILIER MILIER WHITE WHITE WHITE	No.1	No.2	VER STEK STER	WALTER WALTER	
Migration of Primary aromatic amines	ND	ND	0.002	<0.01mg/kg	

Note:

- 1. Test Method: With reference to § 64 LFGB L No. 00.00-6, analysis was performed by UV-visible Spectrometer.
- 2. Test Condition and simulant: 3% acetic acid at 40°C for 2 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.

Reference No.: WTF21F11118328F Page 7 of 11

4. Specific Migration of Primary Aromatic Amines (single substance)*

	70, 7	Result	(mg/kg)		intie and
Test Items	CAS No.	1 st Migration		LOQ (mg/kg)	Limit (mg/kg)
	et et	No.1	No.2	(9/1.9)	(9/1.9/
2-methoxyaniline	90-04-0	ND	ND	0.002	ik strek
4,4'-Diaminobiphenyl	92-87-5	ND	ND	0.002	72, —
4,4'-Methylen-bis-(2-chloroaniline)	101-14-4	ND	ND -	0.002	WHITE W
4,4'-Diaminodiphenylmethane	101-77-9	ND W	ND	0.002	/II
4,4'-Oxydianiline	101-80-4	ND	ND	0.002	الان خالان
4-chloroaniline	106-47-8	ND	ND	0.002	SER TIE
3,3'-Dimethoxybenzidine	119-90-4	ND	ND ND	0.002	7
3,3'-Dimethylbenzidine	119-93-7	ND	ND ND	0.002	MILLE .
2-Methoxy-5-methylaniline	120-71-8	ND	ND	0.002	- E
2,4,5 – Trimethylaniline	137-17-7	ND	ND	0.002	ane -an
4,4'-Thiodianiline	139-65-1	ND	ND	0.002	JEK J
4-aminoazobenzene	60-09-3	ND	ND ND	0.002	
2,4-diaminoanisol	615-05-4	ND	ND	0.002	er while
4,4'-diamino-3,3'- dimethyldiphenylmethane	838-88-0	ND	ND	0.002	. WITE
2-Naphthylamine	91-59-8	ND	ND	0.002	
3,3'-Dichlorobenzidine	91-94-1	ND	ND	0.002	المالية المسايلة
4-Aminobiphenyl	92-67-1	ND SIL	ND	0.002	TEN TO
2-methylaniline	95-53-4	ND TO	ND ND	0.002	, m
4-chloro-o-Toluidine	95-69-2	ND	ND	0.002	de la
2,4-Toluylendiamine	95-80-7	ND	ND	0.002	7
2,4-Aminoazotoluene	97-56-3	ND	ND	0.002	White - N
2-Amino-4-nitrotoluene	99-55-8	ND	ND	0.002	net - d
2,4-Xylidin	95-68-1	ND (ND ND	0.002	r. 70
2,6-Xylidin	87-62-7	ND	ND	0.002	iek intiel
1, 3 - phenylene diamine	108-45-2	ND	ND	0.002	, "- <u>-</u> -

	211 25	Result(mg/kg)		LIER WALTER	WILL WAS
Test Items	CAS No.	2 nd Mi	gration	LOQ (mg/kg)	Limit (mg/kg)
	* **	No.1	No.2	(mg/kg)	(IIIg/Kg)
2-methoxyaniline	90-04-0	ND	ND	0.002	14 7-15k
4,4'-Diaminobiphenyl	92-87-5	ND	ND	0.002	70,
4,4'-Methylen-bis-(2-chloroaniline)	101-14-4	ND	ND OF	0.002	WILLE OF
4,4'-Diaminodiphenylmethane	101-77-9	ND	ND	0.002	
4,4'-Oxydianiline	101-80-4	ND	ND	0.002	iner -our
4-chloroaniline	106-47-8	ND	ND	0.002	SEK TE
3,3'-Dimethoxybenzidine	119-90-4	ND T	ant ND	0.002	24
3,3'-Dimethylbenzidine	119-93-7	ND	ND ND	0.002	MILLE.
2-Methoxy-5-methylaniline	120-71-8	ND	ND	0.002	
2,4,5 – Trimethylaniline	137-17-7	ND	ND	0.002	ano - an
4,4'-Thiodianiline	139-65-1	ND	ND	0.002	JEK J
4-aminoazobenzene	60-09-3	ND O	ND ND	0.002	
2,4-diaminoanisol	615-05-4	ND	ND	0.002	EL OUTE
4,4'-diamino-3,3'- dimethyldiphenylmethane	838-88-0	ND	ND	0.002	William .
2-Naphthylamine	91-59-8	ND	ND	0.002	
3,3'-Dichlorobenzidine	91-94-1	ND	ND	0.002	14 - AV
4-Aminobiphenyl	92-67-1	ND	ND	0.002	18t - 18
2-methylaniline	95-53-4	ND	ND ND	0.002	1/1
4-chloro-o-Toluidine	95-69-2	ND	ND	0.002	14 (CLESE
2,4-Toluylendiamine	95-80-7	ND	ND	0.002	- J.
2,4-Aminoazotoluene	97-56-3	ND	ND	0.002	W M
2-Amino-4-nitrotoluene	99-55-8	ND	ND	0.002	18t - A
2,4-Xylidin	95-68-1	ND	ND	0.002	10 Tuy
2,6-Xylidin	87-62-7	ND	ND	0.002	ek nite
1, 3 - phenylene diamine	108-45-2	ND	ND	0.002	2,

Reference No.: WTF21F11118328F Page 9 of 11

Test Items	CAS No.	Result(mg/kg) 3 rd Migration		LOQ (mg/kg)	Limit (mg/kg)
		2-methoxyaniline	90-04-0	ND	ND
4,4'-Diaminobiphenyl	92-87-5	ND	ND	0.002	ND
4,4'-Methylen-bis-(2-chloroaniline)	101-14-4	ND	ND +	0.002	ND
4,4'-Diaminodiphenylmethane	101-77-9	ND	ND	0.002	ND
4,4'-Oxydianiline	101-80-4	ND	ND	0.002	ND
4-chloroaniline	106-47-8	ND	ND	0.002	ND
3,3'-Dimethoxybenzidine	119-90-4	ND 1	ND.	0.002	ND
3,3'-Dimethylbenzidine	119-93-7	ND	ND ND	0.002	ND
2-Methoxy-5-methylaniline	120-71-8	ND	ND	0.002	ND
2,4,5 – Trimethylaniline	137-17-7	ND	ND	0.002	MD II
4,4'-Thiodianiline	139-65-1	ND	ND	0.002	ND S
4-aminoazobenzene	60-09-3	ND	ND ND	0.002	ND
2,4-diaminoanisol	615-05-4	ND	ND	0.002	ND
4,4'-diamino-3,3'- dimethyldiphenylmethane	838-88-0	ND	ND	0.002	ND
2-Naphthylamine	91-59-8	ND	ND	0.002	ND
3,3'-Dichlorobenzidine	91-94-1	ND	ND	0.002	ND
4-Aminobiphenyl	92-67-1	ND	ND	0.002	ND.
2-methylaniline	95-53-4	ND C	ND ND	0.002	ND
4-chloro-o-Toluidine	95-69-2	ND	ND	0.002	ND
2,4-Toluylendiamine	95-80-7	ND	ND	0.002	ND
2,4-Aminoazotoluene	97-56-3	ND	ND	0.002	ND.
2-Amino-4-nitrotoluene	99-55-8	ND	ND	0.002	ND
2,4-Xylidin	95-68-1	ND	ND ND	0.002	ND
2,6-Xylidin	87-62-7	ND	ND	0.002	ND
1, 3 - phenylene diamine	108-45-2	ND	ND ND	0.002	ND

Note:

- 1. Test Method: With reference to EN 13130-1:2004, analysis was performed by LC-MS-MS.
- 2. Test Condition and simulant: 3% acetic acid at 40°C for 2 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.
- 7. The testing item marked with '*' does not been accredited by CNAS.


5. Bisphenol A Content*

Test Item	Result	(mg/kg)	1.00 (mg/kg)	Limit (mg/kg)	
	No.1	No.2	LOQ (mg/kg)		
Bisphenol A	ND ND	ND U	0.1	Not Detected	

Note:

- 1. Test Method: With reference to EPA3550C:2007, analysis was performed by GC-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from Law No 2012-1442.
- 6. The testing item marked with '*' does not been accredited by CNAS.

Sample Photo:

Reference No.: WTF21F11118328F

No.	Photo of testing part	Parts Description	Client Claimed Material
1		Multicolor plastic	MILIER WALTER WALTER
2		White plastic	THE WALTER WALTER

===== End of Report ======