

RADIO TEST REPORT

For

Mid Ocean Brands B.V.

bamboo wireless charging pad/wireless charging pad

Test Model: MO9698

Additional Model No.: MO9309, MO9997

Prepared for : Mid Ocean Brands B.V.

Address : 7/F., Kings Tower, 111 King Lam Street, Cheung Sha

Wan, Kowloon, Hong Kong

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : Room 101, 201, Building A and Room 301, Building C,

Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : February 06, 2023

Number of tested samples : 2

Serial number : Prototype

Date of Test : February 06, 2023 ~ February 13, 2023

Date of Report : February 13, 2023

RADIO TEST REPORT ETSI EN 303 417 V1.1.1 (2017-09)

Wireless power transmission systems, using technologies other than radio frequency beam in the 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz ranges; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU

Report Reference No.: : LCSA020623057EB

Date Of Issue: : February 13, 2023

Testing Laboratory Name....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : Room 101, 201, Building A and Room 301, Building C, Juji

Industrial Park, Yabianxueziwei, Shajing Street, Bao'an

Report No.: LCSA020623057EB

District, Shenzhen, Guangdong, China

Testing Location/Procedure : Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method

Applicant's Name: : Mid Ocean Brands B.V.

Kowloon, Hong Kong

Test Specification

Standard : ETSI EN 303 417 V1.1.1 (2017-09)

Test Report Form No. : LCSEMC-1.0

TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF : Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: bamboo wireless charging pad/wireless charging pad

Trade Mark.....: N/A

Test Model : MO9698

Input: 5V-2A

USB Output 1: 5V-1A

Ratings.....: USB Output 2: 5V-1A

Wireless Output: 5V-1A

Max Output: 2A

Result: : Positive

Compiled by:

Supervised by:

Approved by:

Vera Dong

Vera Deng/ Administrator

Cary Luo/ Technique principal

Gavin Liang/ Manager

February 13, 2023 **Test Report No.:** LCSA020623057EB Date of issue

Test Model..... : MO9698 EUT.....: bamboo wireless charging pad/wireless charging pad Applicant.....: 3 Mid Ocean Brands B.V. Address.....: 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong Telephone.....: : / Fax.....: : / Manufacturer..... : 114628 Address.....: : / Telephone.....: : / Fax.....: : / Factory: : 114628 Address.....: : / Telephone.....: : / Fax.....: : /

Test Result Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 4 of 29

Revision History

Report Version	Issue Date	Revision Content	Revised By
000	February 13, 2023	Initial Issue	W.S. LCS
		100	

Report No.: LCSA020623057EB

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

TABLE OF CONTENTS

1. GENERAL INFORMATION	
1.1. PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2. SUPPORT EQUIPMENT LIST	
1.3. EXTERNAL I/O	
1.5. TEST METHODOLOGY	
1.6. MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
1.7. DESCRIPTION OF TEST FACILITY	9
1.8. DESCRIPTION OF TEST MODE	9
2. SYSTEM TEST CONFIGURATION	10
2.1. JUSTIFICATION	10
2.2. EUT EXERCISE SOFTWARE	
2.3. SPECIAL ACCESSORIES	
2.5. EQUIPMENT MODIFICATIONS	10
2.6. CONFIGURATION OF TEST SETUP	
3. SUMMARY OF TEST RESULTS	
4. PERMITTED RANGE OF OPERATING FREQUENCIES	
4.1. DEFINITION	
4.2. LIMIT 4.3. TEST PROCEDURE	
4.4. TEST RESULT	
5. OPERATING FREQUENCY RANGE(S) (OFR)	4.4
5.1. DEFINITION	
5.2. LIMIT	
5.3. TEST PROCEDURE	
5.4. TEST RESULT	15
6. H-FIELD REQUIREMENTS	16
6.1. DEFINITION	
6.2. LIMIT	
6.3. TEST SETUP	
6.4. TEST PROCEDURE	
7. TRANSMITTER SPURIOUS EMISSIONS	— •
7.1. DEFINITION	
7.3. TEST SETUP	
7.4. TEST PROCEDURE	21
7.5. TEST RESULT	21
8. TRANSMITTER OUT OF BAND (OOB) EMISSIONS	22
8.1. DEFINITION	22
8.2. LIMIT	
8.3. TEST PROCEDURE	
8.4. TEST RESULT	
9. WPT SYSTEM UNWANTED CONDUCTED EMISSIONS	
9.1. APPLICABILITY	
9.2. DEFINITION	
9.4. Test Procedure	
9.5. TEST RESULT	
10. RECEIVER BLOCKING	
10.1. Definition	
-	

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Page 6 of 29

Report No.: LCSA020623057EB

10.2. LIMIT	25
10.3. TEST SETUP	26
10.4. Test Procedure	26
10.5. TEST RESULT	
11. LIST OF MEASURING EQUIPMENT	28
12. TEST SETUP PHOTOGRAPHS	29
13. PHOTOGRAPHS OF THE EUT	29

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Page 7 of 29 Report No.: LCSA020623057EB

1. GENERAL INFORMATION

1.1. Product Description for Equipment Under Test (EUT)

EUT : bamboo wireless charging pad/wireless charging pad

Test Model : MO9698

Additional Model No. : MO9309, MO9997

Model Declaration : PCB board, structure and internal of these model(s) are the

same, So no additional models were tested

Power Supply : Input: 5V=2A

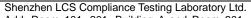
USB Output 1: 5V-1A
USB Output 2: 5V-1A
Wireless Output: 5V-1A

Max Output: 2A

Hardware Version : V1.2

Software Version : V1.0

Wireless Charging


Operating Frequency: 110.0~205.0KHz

Modulation Type : ASK

Antenna Type : Coil Antenna

1.2. Support equipment List					
Manufacturer	Description	Model	Serial Number	Certificate	
Huawei	Mobile phone	FRD-AL10	FRD-AL10C00B373	CE	
OPPO	Adapter	OP52KAUH		CE	

Note: Auxiliary equipment is provided by the laboratory.

1.3. External I/O

I/O Port Description	Quantity	Cable
Micro USB Port	1	USB Cable: 0.3m, unshielded
USB Port	2 测股份	N/A

1.4. Objective

The following report of is prepared on behalf of the Mid Ocean Brands B.V. in accordance with ETSI EN 303 417 V1.1.1 (2017-09): Wireless power transmission systems, using technologies other than radio frequency beam in the 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz ranges; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU.

The objective is to determine compliance with ETSI EN 303 417 V1.1.1 (2017-09).

1.5. Test Methodology

All measurements contained in this report were conducted with ETSI EN 303 417 V1.1.1 (2017-09).

1.6. Measurement Uncertainty (95% confidence levels, k=2)

Test Item		Uncertainty
Radio Frequency	:	0.9 x 10 ⁻⁴
Total RF Power, Conducted	:	1.0 dB
RF Power Density, Conducted	:	1.8 dB
Spurious Emissions, Conducted		1.8 dB
All Emissions, Radiated	3	3.1 dB
Temperature	1	0.5°C
Humidity		1 %
DC And Low Frequency Voltages	:	1 %

1.7. Description of Test Facility

NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595.

1.8. Description Of Test Mode

The EUT has been tested under typical operating condition. No software used to control the EUT for staying in transmitting mode for testing.

***Note: The EUT has been tested under normal condition in this report, and only recorded the worst test data in the report.

Scan code to check authenticity

LCS Testing Lab

2. SYSTEM TEST CONFIGURATION

2.1. Justification

The system was configured for testing in engineering mode.

2.2. EUT Exercise Software

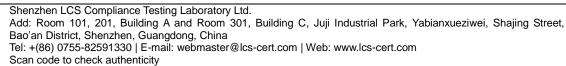
N/A.

2.3. Special Accessories

N/A.

2.4. Block Diagram/Schematics

Please refer to the related document.


2.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

2.6. Configuration of Test Setup

Please refer to the test setup photo.

3. SUMMARY OF TEST RESULTS

SUMMARY OF TES	ST RESULTS	
Reference Clause No.	Description Of Test Item	Result
§4.3.2	Permitted range of operating frequencies	Compliant
§4.3.3	Operating frequency range(s) (OFR)	Compliant
§4.3.4	H-field requirements	Compliant
§4.3.5	Transmitter spurious emissions	Compliant
§4.3.6	Transmitter out of band (OOB) emissions	Compliant
§4.3.7	WPT system unwanted conducted emissions	N/A
§4.4.2	Receiver blocking	Compliant

Note: N/A means not applicable

Report No.: LCSA020623057EB

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

4. PERMITTED RANGE OF OPERATING FREQUENCIES

4.1. Definition

The permitted range of operating frequencies denotes the frequency ranges set out in Table 1. It likewise denotes the respective frequency range for accommodation of the fundamental WPT frequency of the EUT within its operating frequency range (OFR).

Report No.: LCSA020623057EB

Table 1: WPT systems within the permitted frequency bands below 30MHz

	WPT frequency range	Frequency Bands	WPT systems
Transmit and Receive	1	19 kHz to 21 kHz	WPT systems
Transmit and Receive	2	59 kHz to 61 kHz	WPT systems
Transmit and Receive	3	79 kHz to 90 kHz	WPT systems
Transmit and Receive	士·· · · · · · · · · · · · · · · · · · ·	100 kHz to 119 kHz	WPT systems
Transmit and Receive	4 CS Testing	119 kHz to 140 kHz	WPT systems
Transmit and Receive	41 100	140 kHz to 148,5 kHz	WPT systems
Transmit and Receive		148.5 kHz to 300 kHz	WPT systems
Transmit and Receive	5	6765kHz to 6795 kHz	WPT systems

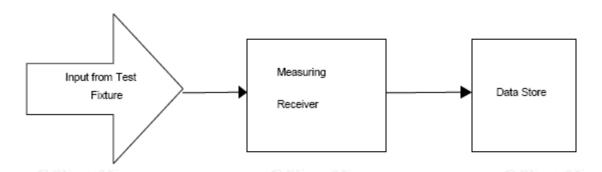
4.2. Limit

The permitted range of operating frequency range(s) for intentional emissions shall be within 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz.

Table 2: Overview of operational modes within a WPT system

Operational Mode	Set-up	Function of base station	Function of mobile device	Test scenario	Conformance Requirements
Mode 1: base station in stand-by, idle mode	Single device	Transmitter	Not applicable	Single radiation test (TX) with the base station/charging pad. The test set-up as described in clause 6.1.2 shall be used.	Operating frequency range (clause 4.3.3) H-Field emission (clause 4.3.4) TX spurious (clauses 4.3.5, 4.3.6 and 4.3.7) Performance criteria test (RX test) (clause 4.4)
Mode 2: Communication before charging, adjustment charging mode / position	In combination	TX and RX	TX and RX	Specific test setup, declared by the manufacturer. Manufacturer shall declare the maximal distance between base station and mobile device the WPT system is able to communicate (distance D). The test setup- up shall be performed with the largest communication distance. The test set-up as described in clause 6.1.3 shall be used.	Operating frequency range (clause 4.3.3) H-Field emission (clause 4.3.4) TX spurious (clauses 4.3.5, 4.3.6 and 4.3.7) Performance criteria test (RX test) (clause 4.4) Wanted performance criteria test (RX test) (clause 4.4)
Mode 3: Communication	WPT system alignment	TX and RX	TX and RX	Worst case alignment	Operating frequency range (clause 4.3.3)
Mode 4: energy transmission	WPT system alignment	TX and RX	TX and RX	Both tests can be performed within one set-up, worst-case alignment. The test set-up as described in clause 6.1.4 shall be used.	H-Field emission (clause 4.3.4) TX spurious (clauses 4.3.5, 4.3.6 and 4.3.7) Performance criteria test (RX test) (clause 4.4) Wanted performance criteria test (RX test) (clause 4.4)

3)


Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

4.3. Test Procedure

Please refer to ETSI EN 303 417 V1.1.1 (2017-09) clause 6 for the measurement method.

4.4. Test Result

The manufacturer declared that the WPT system is designed to operate in the frequency ranges 110KHz~205KHz. The justification/test shall be performed for Operating frequency ranges(OFR).

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

5. OPERATING FREQUENCY RANGE(S) (OFR)

5.1. Definition

The operating frequency range is the frequency range over which the WPT system is intentionally transmitting (all operational modes, see clause 4.2.3, Table 2).

The operating frequency range(s) of the WPT system are determined by the lowest (fL) and highest frequency (fH) as occupied by the power envelope.

The WPT system could have more than one operating frequency range.

For a single frequency systems the OFR is equal to the occupied bandwidth (OBW) of the WPT system.

For multi-frequency systems the OFR is described in figures 2 and 3.

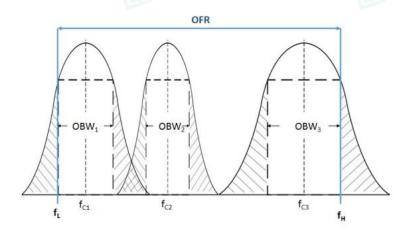


Figure 2: OFR of a multi - frequency WPT system within one frequency range of Table 2 and within one WPT system cycle time

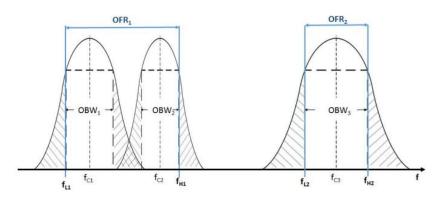


Figure 3: OFR of a multi - frequency WPT system within two frequency ranges of Table 2 and within one WPT system cycle time

5.2. Limit

The operating frequency range for emissions shall be within one of the following limits: 19 - 21 kHz, 59 - 61 kHz, 79 - 90 kHz, 100 - 300 kHz, 6 765 - 6 795 kHz.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

5.3. Test Procedure

Please refer to ETSI EN 303 417 V1.1.1 (2017-09) clause 6 for the measurement method.

5.4. Test Result

Pass

Test Voltage: DC 5V (All voltages are tested and only recorded the worst cast which voltage is DC

Test Mode: Mode 3 (Worst Case)

real medel mede a (trefat edde)						
	Test Result					
Test Environmental Conditions	Test Voltage (Vdc)	Lower Frequency (KHz)	Upper Frequency (KHz)	Limit Limit		
23.3℃, 53.6%	5	110.28	204.45	100KHz <f<300khz< td=""></f<300khz<>		

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

6. H-FIELD REQUIREMENTS

6.1. Definition

The radiated H-field is defined in the direction of maximum field strength under specified conditions of measurement.

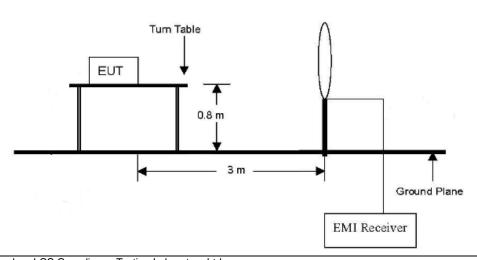
Report No.: LCSA020623057EB

6.2. Limit

The H-field limits are provided in Table 3.

They have been specified for control of any radiated emissions within the OFR originating from the WPT system (power transmission and accompanying data communication).

The H-field limits in Table 3 are EU wide harmonised according to EC Decision 2013/752/EU [i.2]. Further information is available in ERC/REC 70-03 [i.1].


Table 3 H-field limits at 10 m

	100000111101011111111111111111111111111				
Frequency range [MHz]	H-field strength limit [dBµA/m at 10 m]	Comments			
0,019 ≤ f < 0,021	72				
$0.059 \le f < 0.061$	69,1 descending 10 dB/dec above 0,059 MHz	See note 1			
0,079 ≤ f < 0,090	67,8 descending 10 dB/dec above 0,079 MHz	See note 2			
0,100 ≤ f < 0,119	42				
0,119 ≤ f < 0,135	66 descending 10 dB/dec above 0,119 MHz	See note 1			
0,135 ≤ f < 0,140	42				
0,140 ≤ f < 0,1485	37,7	- TI			
0,1485 ≤ f < 0,30	5-AMERICA	一话管测			
6,765 ≤ f < 6,795	42 65 1851	VST ICS Testin			

NOTE 1: Limit is 42 dBµA/m for the following spot frequencies: 60 kHz ± 250 Hz and 129,1 kHz ± 500 Hz.

NOTE 2: At the time of preparation of the present document the feasibility of increased limits for high power wireless power transmission systems to charge vehicles [i.4] was prepared. New specific requirements for such systems (e.g. higher H-field emission limits in the 79 - 90 kHz band) will be reflected within a future revision of the present document.

6.3. Test Setup

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

6.4. Test Procedure

Please refer to ETSI EN 303 417 V1.1.1 (2017-09) clause 6.1&6.2 for the measurement method.

Report No.: LCSA020623057EB

6.5. Test Result

Pass

Test Voltage: DC 5V (All voltages are tested and only recorded the worst cast which voltage is DC 5V)

Normal Condition

Test Mode: Mode 3 (Worst Case: TX 165.0KHz)

rest ivid	ode: Mode .	3 (Worst Case: 1X 165	.UNFIZ)		
Frequency (KHz)	Antenna Polarity	Measure Level At 3m (dBuA/m)	Calculated Factor (dB, -C ₃)	Result At 10m (dBuA/m)	Limit At 10m (dBuA/m)
110.00	细股价	-5.67	-31.4	-37.07	42.0
113.00	ting Lab	-6.88	-31.4	-38.28	42.0
117.00		6.36	-31.4	-25.04	42.0
121.00		5.49	-31.4	-25.91	42.0
125.00		4.36	-31.4	-27.04	66 descending 3 dB/oct above 0,119 MHz
130.00		6.79	-31.4	-24.61	66 descending 3 dB/oct above 0,119 MHz
133.00		9.18	-31.4	-22.22	66 descending 3 dB/oct above 0,119 MHz
134.50	\	6.03	-31.4	-25.37	66 descending 3 dB/oct above 0,119 MHz
139.00		4.36	-31.4	-27.04	42.0
144.00		6.31	-31.4	-25.09	37.7
147.50		3.70	-31.4	-27.70	37.7
150.00		9.12	-31.4	-22.28	-5.0
165.00		9.20	-31.4	-22.2	-5.0
205.00		8.12	-31.4	-23.28	-5.0

***Note:

 $H_{10m} = H_{3m} - C_3$

The correct factor C₃ is equal to or approximately equal to 31.4dB All test modes have been tested and only record the worst result.

	ondition: Lower Temp Mode 3 (Worst Case: 1			
Frequency (KHz)	Measure Level by Probe at 10cm (dBuA/m)	Calculated Factor (dB)	Result At 10m (dBuA/m)	Limit At 10m (dBuA/m)
110.00	33.10	-60.94	-27.84	42.0
113.00	32.67	-60.94	-28.27	42.0
117.00	30.76	-60.94	-30.18	42.0
121.00	29.79	-60.94	-31.15	42.0
125.00	27.32	-60.94	-33.62	66 descending 3 dB/oct above 0,119 MHz
130.00	27.32	-60.94	-33.62	66 descending 3 dB/oct above 0,119 MHz
133.00	30.51	-60.94	-30.43	66 descending 3 dB/oct above 0,119 MHz
134.50	26.64	-60.94	-34.30	66 descending 3 dB/oct above 0,119 MHz
139.00	32.41	-60.94	-28.53	42.0
144.00	28.12	-60.94	-32.82	37.7
147.50	33.21	-60.94	-27.73	37.7
150.00	31.56	-60.94	-29.38	-5.0
165.00	36.20	-60.94	-24.74	-5.0
205.00	25.20	-60.94	-35.74	-5.0

***Note:

The correct factor is -60.94dB which is calculated by the reference level measured by probe in normal condition.

All test modes have been tested and only record the worst result.

Report No.: LCSA020623057EB

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

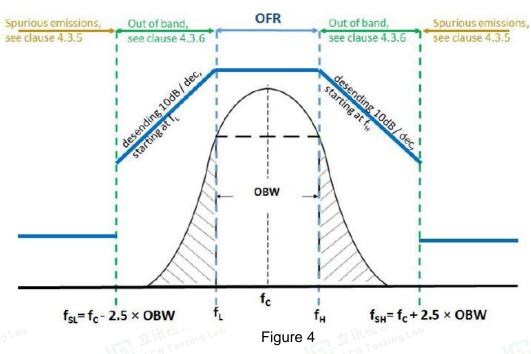
100t Wiodo. I	Mode 3 (Worst Case: 7		96 . 69 10	MS
Frequency (KHz)	Measure Level by Probe at 10cm (dBuA/m)	Calculated Factor (dB)	Result At 10m (dBuA/m)	Limit At 10m (dBuA/m)
110.00	27.63	-60.94	-33.31	42.0
113.00	34.37	-60.94	-26.57	42.0
117.00	29.96	-60.94	-30.98	42.0
121.00	30.84	-60.94	-30.10	42.0
125.00	27.93	-60.94	-33.01	66 descending 3 dB/oct above 0,119 MHz
130.00	29.89	-60.94	-31.05	66 descending 3 dB/oct above 0,119 MHz
133.00	31.89	-60.94	-29.05	66 descending 3 dB/oct above 0,119 MHz
134.50	35.04	-60.94	-25.90	66 descending 3 dB/oct above 0,119 MHz
139.00	32.06	-60.94	-28.88	42.0
144.00	30.39	-60.94	-30.55	37.7
147.50	32.96	-60.94	-27.98	37.7
150.00	32.36	-60.94	-28.58	-5.0
165.00	35.34	-60.94	-25.60	-5.0
205.00	24.78	-60.94	-36.16	-5.0

***Note:

The correct factor is -60.94dB which is calculated by the reference level measured by probe in normal condition.

All test modes have been tested and only record the worst result.

Report No.: LCSA020623057EB


Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

7. TRANSMITTER SPURIOUS EMISSIONS

7.1. Definition

The transmitter spurious emissions for a single frequency system are to be considered in frequency ranges defined in Figure 4 (f < fSL and f > fSH).

7.2. Limit

The radiated field strength of spurious emissions below 30 MHz shall not exceed the generated H-field given in Table 4.

Table 4

State (see note)	Frequency 9 kHz ≤ f < 10 MHz	Frequency 10 MHz ≤ f < 30 MHz
Operating	27 dBµA/m at 9 kHz	3.5.dPu\/m
Operating	descending 10 dB/dec	-3,5 dBμA/m
Stondby	5,5 dBµA/m at 9 kHz	25 dDuA/m
Standby	descending 10 dB/dec	-25 dBµA/m
A STATE OF THE STA	2 47117	

NOTE: "Operating" means mode 2, 3 and 4 according to Table 2; "standby" means mode 1 according to Table 2.

The power of any radiated spurious emission between 30 MHz and 1 GHz shall not exceed the values given in Table 5.

Table 5

State (see note)	47 MHz to 74 MHz 87,5 MHz to 118 MHz 174 MHz to 230 MHz 470 MHz to 790 MHz	Other frequencies between 30 MHz to 1 000 MHz
Operating	4 nW	250 nW
Standby	2 nW	2 nW

NOTE: "Operating" means mode 2, 3 and 4 according to Table 2; "standby" means mode 1 according to Table 2.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

7.3. Test Setup

Please refer to ETSI EN 303 417 V1.1.1 (2017-09) clause 6.

7.4. Test Procedure

Please refer to ETSI EN 303 417 V1.1.1 (2017-09) clause 6.1&6.2 for the measurement method.

7.5. Test Result

The	Worst Test Result for	Mode 3 (TX 165.0KHz; 9KHz~	30MHz)
Frequency (MHz)	Measure Level (dBuA/m)	Limit (dBuA/m)	Margin (dB)
0.20	7.52	27 dBµA/m at 9 kHz	-6.06
0.82	0.85	descending 3 dB/oct (9KHz – 10MHz)	-6.62
14.75	-16.77	-3,5 dBµA/m	-13.27
21.29	-14.83	(10MHz – 30MHz)	-11.33
	Test Result for Mo	de 1 (Standby; 9KHz~30MHz)	
Frequency (MHz)	Measure Level (dBuA/m)	Limit (dBuA/m)	Margin (dB)
0.23	-15.32	5.5 dBµA/m at 9 kHz	-6.79
0.42	-17.54	descending 3 dB/oct (9KHz – 10MHz)	-6.41
11.13	-36.75	-25 dBµA/m	-11.75
22.77	-40.12	(10MHz – 30MHz)	-15.12

Remark:

Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. Measured in frequency range from 9k~10th harmonic or 1GHz(which is greater).

Test Voltage: DC 5V (All voltages are tested and only recorded the worst cast which voltage is DC 5V)

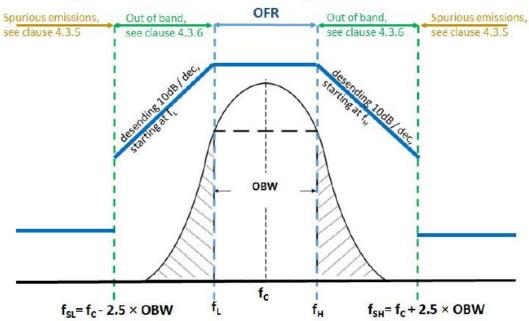
The Wo	The Worst Test Result for Mode 3 (TX 165.0KHz; Above 30MHz)				
Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Margin (dB)	Pol./Phase	Remark
170.97	-46.55	-36.00	-10.55	Horizontal	Peak
300.26	-47.68	-36.00	-11.68	Horizontal	Peak
737.43	-63.32	-54.00	-9.32	Horizontal	Peak
115.20	-67.24	-54.00	-13.24	Vertical	Peak
363.09	-51.66	-36.00	-15.66	Vertical	Peak
651.73	-68.09	-54.00	-14.09	Vertical	Peak

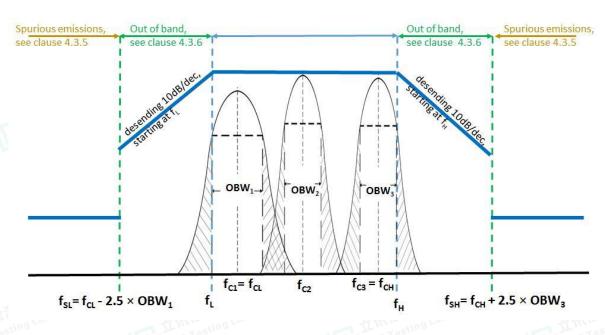
Note: We have test all modes and only record the worst result.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

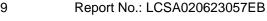

8. TRANSMITTER OUT OF BAND (OOB) EMISSIONS


8.1. Definition

The WPT system out of band emissions are to be considered in frequency ranges defined in Figure 4 and Figure 5 (between fSL and fL and between fH and fSH).

8.2. Limit

The OOB limits are visualized in figures 4 and 5; they are descending from the intentional limits from Table 3 at fH/fL with 10 dB/decade.



Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

8.3. Test Procedure

Please refer to ETSI EN 303 417 V1.1.1 (2017-09) clause 6.1&6.2 for the measurement method.

8.4. Test Result

PASS

Test Voltage: DC 5V (All voltages are tested and only recorded the worst cast which voltage is DC 5V)

Voltag	je 13 DO 01)		
Test Mode: Mode	3		
f _C	f_L	f _H	OBW
(KHz)	(KHz)	(KHz)	(KHz)
110KHz(f _{CL})	109.963	110.034	0.071
205KHz(f _{CH})	204.960	205.035	0.075

Frequency (KHz)	Max measured Values At 3m (dBuA/m)	Calculated Factor (dB, -C ₃)	Max measured Values At 10m (dBuA/m)	Limit (dBuA/m)
109.8300KHz ~ 110.0000KHz	-6.52	-31.4	-37.92	42.0
205KHz ~ 205.1900KHz	-7.12	-31.4	-38.52	-5.0

***Note:

 $H_{10m} = H_{3m} - C_3$

The correct factor C₃ is equal to or approximately equal to 31.4dB All test modes have been tested and only record the worst result.

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

9. WPT SYSTEM UNWANTED CONDUCTED EMISSIONS

9.1. Applicability

This applies to all WPT systems where the cable to the primary coil exceeds a length of 3 m and where the cable is not installed in the ground or any metallic structures.

9.2. Definition

WPT system unwanted conducted emissions are based on the emissions of the unwanted common mode current on the cable between the off board power supply and the primary coil seen as a monopole radiator driven against the power supply.

9.3. Limit

The common mode current (ICM) between 1 MHz and 30 MHz shall not exceed the following limit:

$$ICM = 47 - 8 \times log(f) dB\mu A$$

NOTE: f is the frequency in MHz.

9.4. Test Procedure

Please refer to ETSI EN 303 417 V1.1.1 (2017-09) clause 6.2.4 for the measurement method.

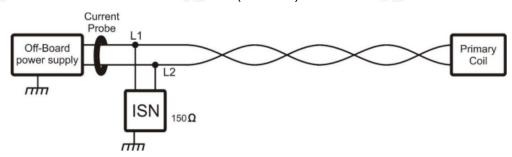


Figure 9: Measurement setup for unwanted conducted emissions

9.5. Test Result

NOT Applicable.

Note: The EUT cable to the primary coil is less than a length of 3 m.

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

10. RECEIVER BLOCKING

10.1. Definition

Blocking is a measure of the capability of the receiver to receive a wanted signal without exceeding a given degradation due to the presence of an unwanted input signal at any frequencies other than those of the receiver spurious responses.

Report No.: LCSA020623057EB

The test shall be performed in the relevant operational modes (see clause 4.2.3).

The wanted performance criteria from clause 4.2.2 shall be used as criterion for the receiver blocking tests.

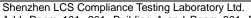

10.2. Limit

Table 6: Receiver blocking limits

	Table 0. INC	cive blocking innits	
	In-band signal	OOB signal	Remote-band signal
Frequency	Centre frequency (fc) of	$f = fc \pm F$ (see note)	$f = fc \pm 10 \times F$ (see
	the WPT system (see		note)
	clause 4.3.3)		
Signal level			
field strength	72 dBμA/m	72 dBμA/m	82 dBµA/m
at the EUT			
NOTE: F - OF	R see clause 4 3 3		

Page 26 of 29 Report No.: LCSA020623057EB

10.3. Test Setup

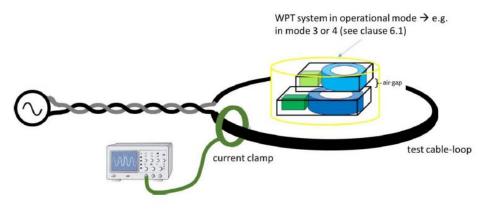


Figure 11: Schematic test set-up for the RX-blocking test

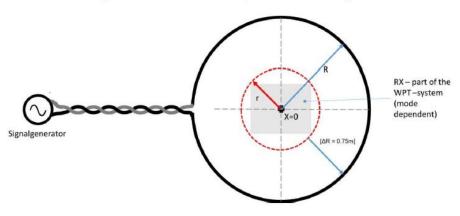


Figure 12: Schematic test set-up for the RX-blocking test

10.4. Test Procedure

- a) The fulfilment of the WPT system performance criterion in all possible operational modes (see clause 4.2.3) shall be tested in presence of the inference signals according to Table 6.
- b) The manufacturer shall declare in which device orientation(s) (worst case) the test shall be performed.
- c) The WPT system shall initially operate without interference according to its specified sensitivity (detecting an specific object in the maximum depth as declared by the manufacturer (see clause 4.2.2 on wanted performance criteria)).
- d) The test setup is visualized in the following Figures 11 and 12.
- e) The tool shall be operated as intended (e.g. some tools might require to be moved across the object, some tool can be used stationary).
- f) The test shall be carried out inside a test chamber according to clauses C.1.1 and C.1.2 in ETSI EN 300 330 [1].
- g) A test loop with a radius r shall be used to create the magnetic field; the test loop shall lie on a non-metallic ground and the minimum distance to metallic objects (e.g. ground plane) shall be 0.75 m.
- h) The EUT shall be placed to the centre of the test-loop (e.g. see Figures 11 and 12).

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

i) The test loop shall be sufficiently large so that the test loop itself does not influence the WPT system; The radius R of the test-loop shall be in minimum $\Delta R = 0.75$ m larger than the maximum dimension r of the EUT.

Report No.: LCSA020623057EB

- j) (See Figure 12): $R \ge r + \Delta R$.
- k) The maximum H-Field can be calculated from the loop current I (into the test-loop) with the following formula:
- I) The required output current to achieve the required magnetic field from Table 12 at the WPT system shall be generated with a signal generator (unmodulated signal) at the test frequencies from Table 6.
- m) For each test frequency the "reaction" of the device shall be recorded and checked against the performance criterion from clause 4.2.2.

n)

10.5. Test Result

PASS.

EUT		Interference		
Operational	Unwanted Input Signal	Test Frequency	Unwanted Input Signal	Conclusion
Mode	Type	(KHz)	Level (dBµA/m)	
	In-band signal	fc=165.0KHz	72	PASS
Mode 3	OOP signal	fc - OFR	72	PASS
(worst	OOB signal	fc + OFR	72	PASS
case)	Romata hand signal	fc - 10*OFR	82	PASS
4会·III] 展设 1977	Remote-band signal	fc + 10*OFR	82	PASS
Note: F = OF	R IIII	ab	Titlesting Lab	Tilling

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

11.	LIST OF MEASURI	NG EQUIPME	NT			
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	EMI Test Software	Farad	EZ	/	N/A	N/A
2	3m Full Anechoic Chamber	MRDIANZI	FAC-3M	MR009	2021-09-25	2024-09-24
3	Positioning Controller	Max-Full	MF7802BS	MF780208586	N/A	N/A
4	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2021-08-29	2024-08-28
5	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2021-09-12	2024-09-11
6	EMI Test Receiver	R&S	ESR 7	101181	2022-06-16	2023-06-15
7	Exposure Level Tester	Narda	ELT-400	N-0713	2022-10-29	2023-10-28
8	B-Field Probe	Narda	ELT-400	M-1154	2022-10-29	2023-10-28
			-01111971177			

Report No.: LCSA020623057EB

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

12. TEST SETUP PHOTOGRAPHS

Please refer to separated files Appendix D for Photographs of Test Setup_RF.

13. PHOTOGRAPHS OF THE EUT

Please refer to separated files Appendix C for Photographs of The EUT.

-----THE END OF REPORT-----

For

Mid Ocean Brands B.V.

bamboo wireless charging pad/wireless charging pad

Test Model: MO9698

Additional Model No.: MO9309, MO9997

Prepared for : Mid Ocean Brands B.V.

Address : 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan,

Kowloon, Hong Kong

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : Room 101, 201, Building A and Room 301, Building C, Juji

Industrial Park, Yabianxueziwei, Shajing Street, Bao'an

Report No.: LCSA020623057EC

District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : February 06, 2023

Number of tested samples : 2

Serial number : Prototype

Scan code to check authenticity

Date of Test : February 06, 2023 ~ February 13, 2023

Date of Report : February 13, 2023

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

HEALTHTEST REPORT

EN IEC 62311:2020 & EN 50665:2017

Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz - 300 GHz)

Report Reference No.....: LCSA020623057EC

Date of Issue : February 13, 2023

Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address: Room 101, 201, Building A and Room 301, Building C. Juii

Industrial Park, Yabianxueziwei, Shajing Street, Bao'an

Report No.: LCSA020623057EC

District, Shenzhen, Guangdong, China

Testing Location/Procedure: Full application of Harmonised standards ■

Partial application of Harmonised standards

Other standard testing method

Applicant's Name: : Mid Ocean Brands B.V.

Address: : 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan,

Kowloon, Hong Kong

Test Specification

EN IEC 62311:2020 Standard.....

EN 50665:2017

Test Report Form No.....: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF : Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes noresponsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: bamboo wireless charging pad/wireless charging pad

Trade Mark.....: N/A

Test Model : MO9698

Ratings: Input: 5V=2A

USB Output 1: 5V-1A USB Output 2: 5V=1A Wireless Output: 5V-1A

Max Output: 2A

Result.....: Positive

Compiled by:

Supervised by:

Approved by:

Vera Deng/ Administrator

Cary Luo/ Technique principal

Gavin Liang/ Manager

HEALTH--TEST REPORT

Test Report No.: LCSA020623057EC February 13, 2023

Date of issue

EUT......: bamboo wireless charging pad/wireless charging pad

Applicant......: Mid Ocean Brands B.V.

Address....: 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong

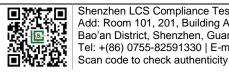
Telephone...: /

Fax....: /

Test Model..... : MO9698

Factory..... : 114628

 Address......
 : /


 Telephone......
 : /

 Fax......
 : /

Test Result Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History				
Report Version	Issue Date	Revision Content	Revised By	
000	February 13, 2023	Initial Issue		

Report No.: LCSA020623057EC

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: Room 101, 201, Building A and Room 301, Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Bao'an District, Shenzhen, Guangdong, China
Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

1. GENERAL INFORMATION

1.1. Product Description for Equipment Under Test (EUT)

EUT : bamboo wireless charging pad/wireless charging pad

Test Model : MO9698

Additional Model No. : MO9309, MO9997

Model Declaration : PCB board, structure and internal of these model(s) are the

same, So no additional models were tested

Power Supply : Input: 5V=2A

USB Output 1: 5V-1A
USB Output 2: 5V-1A
Wireless Output: 5V-1A

Max Output: 2A

Hardware Version : V1.2 Software Version : V1.0

Wireless Charging

Operating Frequency: 110.0~205.0KHz

Modulation Type : ASK

Antenna Type : Coil Antenna

According to its specifications, the EUT must comply with the requirements of the following standards:

Report No.: LCSA020623057EC

EN IEC 62311:2020–Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz - 300 GHz)

EN 50665:2017–Generic standard for assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz - 300 GHz)

1.3. Test Methodology

All measurements contained in this report were conducted with EN IEC 62311:2020. EN 50665:2017 is being considered

1.4. Description of Test Facility

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

1.5. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate
Huawei	Mobile phone	FRD-AL10	FRD-AL10C00B373	CE
OPPO	Adapter	OP52KAUH		CE

Note: Auxiliary equipment is provided by the laboratory.

1.6. External I/O

I/O Port Description	Quantity	Cable		
Micro USB Port	1、测股份	USB Cable: 0.3m, unshielded		
USB Port	2 esting Las	N/A		

1.7. Equipment

Radiated emissions are measured with one or more of the following types of linearly polarizedantennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrumanalyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI TestReceivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for makingmeasurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference MeasuringApparatus and Measurement Methods."

1.8. Measurement Uncertainty(95% confidence levels, k=2)

Test Item		Uncertainty			
Radio Frequency		0.9 x 10 ⁻⁴			
Total RF Power, Conducted		1.0 dB			
RF Power Density, Conducted		1.8 dB			
Spurious Emissions, Conducted		1.8 dB			
All Emissions, Radiated		3.1 dB			
Temperature	:	0.5°C			
Humidity		1 %			
DC And Low Frequency Voltages		1 %			

Report No.: LCSA020623057EC

2.HUMAN EXPOSURE TO THE ELECTROMAGNETIC FIELDS

2.1 Basic Restrictions Reference levels

Council Recommendation 1999/519/EC Annex III

Basic restrictions for electric, magnetic and electromagnetic fields (0Hz to 300GHz)

Frequency range	Magnetic flux density (mT)	Current density (Ma/m2) (rms)	Whole body average SAR (W/kg)	Localised SAR (head and trunk) (W/kg)	Localised SAR (limbs) (W/kg)	Power density (W/m2)
0Hz	40	-	-	-	-	-
>0-1Hz	-	8	一加股份	-	-	一個股份
1-4Hz	/b _	8/f	THIS INGLE		11	A Ming Lab
4-1000Hz	-	2	LCS Test	-	Mag Lo	STes_
1000Hz-100kHz	-	f/500	-	-	1	-
100kHz-10MHz	-	f/500	0.08	2	4	-
10MHz-10GHz	-	-	0.08	2	4	-
10-300GHz	-	-	-	-	-	10

Note:

- 1. f is the frequency in Hz.
- 2. The basic restriction on the current density is intended to protect against acute exposure effects on central nervous system tissues in the head and trunk of the body and includes a safety factor. The basic restrictions for ELF fields are based on established adverse effects on the central nervous system. Such acute effects are essentially instantaneous and there is no scientific justification to modify the basic restrictions for exposure of short duration. However, since the basic restriction refers to adverse effects on the central nervous system, this basic restriction may permit higher current densities in body tissues other than the central nervous system under the same exposure conditions.
- 3. Because of electrical inhomogeneity of the body, current densities should be averaged over a cross section of 1cm2 perpendicular to the current direction.
- 4. For frequencies up to 100 kHz, peak current density values can be obtained by multiplying the rms value by $\sqrt{2}$ (=1.414). For pulses of duration tp the equivalent frequency to apply in the basic restrictions should be calculated as=1/(2tp)
- 5. For frequencies up to 100kHz and for pulsed magnetic fields, the maximum current density associated with the pulses can be calculated from the rise/fall times and the maximum rate of change of magnetic flux density. The induced current density can then be compared with the appropriate basic restriction.
- 6. All SAR values are to be averaged over any six-minute period.
- 7. Localised SAR averaging mass is any 10g of contiguous tissue; the maximum SAR so obtained should be the value used for the estimation of exposure. These 10g of tissue are intended to be a mass of contiguous tissue with nearly homogeneous electrical properties. In specifying a contiguous mass of tissue, it is recognised that this concept can be used in computational dosimetry but may present difficulties for direct physical measurements. A simple geometry such as cubic tissue mass can be used provided that the calculated dosimetric quantities have conservation values relative to the exposure guidelines.

S

8. For pulses of duration to the equivalent frequency to apply in the basic restrictions should be calculated as=1/(2tp). Additionally, for pulsed exposures, in the frequency range 0,3 to 10GHz and for localised exposure of the head, in order to limit and avoid auditory effects caused by thermoelastic expansion, an additional basic restriction is recommended. This is that SA should not exceed 2mJ kg-1 averaged over 10g of tissue.

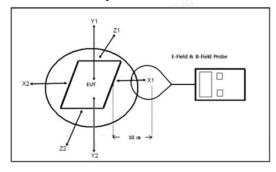
2.2 Reference Levels

Council Recommendation 1999/519/EC Annex III Reference levels for electric, magnetic and electromagnetic fields (0Hz to 300GHz)

Frequency range			B-field (μT)	Equivalent plane wave power density Seq (W/m2)
0-1Hz	-	3,2×10 ⁴	4×10 ⁴	-
1-8Hz	1000	$3,2\times10^4/f^2$	$4 \times 10^4 / f^2$	-
8-25Hz	1000	4000/f	5000/f	-
0.025Hz-0,8kHz	250/f	4/f	5/f6,25	-
0,8-3kHz	250/f	5	6,25	-
3-150kHz	87	5	6,25	-
0,15-1MHz	87	0.73/f	0,92/f	-
1-10MHz	87/f ^{1/2}	0.73/f	0,92/f	-
10-400MHz	28	0.073	0,092	2
400-2000MHz	1,375 f ^{1/2}	0,0037 f ^{1/2}	0,0046f ^{1/2}	f/200
2-300GHz	61	0,16	0,20	10

Note:

- 1. As indicated in the frequency range column.
- 2. For frequencies between 100kHz and 10GHz, Seq, E2, H2 and B2 are to be averaged over any six-minute period.
- 3. For frequencies exceeding 10GHz, Seq, E2, H2 and B2 are to be averaged over any 68/.1.05-minute period (.in GHz).
- 4. No E-field value is provided for frequencies <1Hz, which are effectively static electric fields. For most people the annoying perception of surface electric charges will not occur at field strengths less than 20kV/m. Spark discharges causing stress or annoyance should be avoided.


3. RF EXPOSURE EVALUATION

3.1.Test Equipment

The following test equipments are used during the power line conducted measurement:

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due. Date
1	Exposure Level Tester	Narda	ELT-400	N-0713	2022-10-29	2023-10-28
2	B-Field Probe	Narda	ELT-400	M-1154	2022-10-29	2023-10-28

3.2.Block Diagram of Test Setup

*Note:

Position A: Back Side of the EUT
Position B: Left Side of the EUT
Position C: Front Side of the EUT
Position D: Right Side of the EUT
Position E: Top Side of the EUT
Position F: Bottom Side of the EUT

3.3. Test Results

H-field Strength Test Result:

Test condition: Wireless Charging mode

	47-17		<u> </u>	47.477			47.87	
	Probe	Probe	Probe	Probe	Probe	Probe		
Frequency	Position	Position	Position	Position	Position	Position	ResultH	Limit
Range(KHz)	Hx1	Hx2	Hy1	Hy2	Hz1	Hz2	(A/m)	(A/m)
	(A/m)	(A/m)	(A/m)	(A/m)	(A/m)	(A/m)		
165.0	0.09	0.10	0.08	0.09	0.09	0.08	0.162	4.242

$$H = \sqrt{H_X^2 + H_Y^2 + H_Z^2} = \sqrt{0.10^2 + 0.09^2 + 0.09^2} A/m = 0.162A/m$$

Limit=0.73/0.165A/m=4.242A/m

Note: All test modes have been tested and only record the worst result.

-----THE END OFREPORT-----

ZORY