

# **TEST REPORT**

Report No...... : WTF22F09194547A2F

Applicant..... : Mid Ocean Brands B.V.

Wan, Kowloon, Hong Kong

**Manufacturer** ..... 114276

Sample Name ..... PE bottle

Sample Model .....: MO9538

Test Requested .....: In accordance with Regulation (EU) No 10/2011 with

amendments, Council of Europe Resolution AP(2004)4

and Regulation (EC) No 1935/2004.

Test Conclusion .....: Pass (Please refer to next pages for details)

Date of Receipt sample ...... : 2022-09-26 & 2022-10-25

Testing period .....: 2022-09-26 to 2022-10-17 & 2022-10-25 to 2022-11-11 &

2022-11-25 to 2022-12-01

Date of Issue..... : 2022-12-01

Test Result..... : Refer to next page (s)

## Prepared By:

## Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Signed for and on behalf of Waltek Testing Group (Foshan) Co., Ltd.

Jessise Liu

Jessise.Liu



#### Test Results:

# 1. Overall Migration Test

|                              | TEX TEX OUT       | R                            | esult (mg/dm                 |                              | at at                 |                       |
|------------------------------|-------------------|------------------------------|------------------------------|------------------------------|-----------------------|-----------------------|
| Food Simulant Test Condition |                   | at the                       | No.1                         | LOQ                          | Limit                 |                       |
|                              | TER WALTER WALTER | 1 <sup>st</sup><br>Migration | 2 <sup>nd</sup><br>Migration | 3 <sup>rd</sup><br>Migration | (mg/dm <sup>2</sup> ) | (mg/dm <sup>2</sup> ) |
| 3% Acetic Acid               | 100°C for 2 hours | ND                           | ND                           | ND                           | 3 3                   | 10                    |
| 10% Ethanol                  | 100°C for 2 hours | ND                           | MD M                         | ND                           | 3                     | 10                    |

|                  | TEX DIFER MITE    | Result (mg/dm²)              |                              |                              | T 24                  |                       |
|------------------|-------------------|------------------------------|------------------------------|------------------------------|-----------------------|-----------------------|
| Food Simulant    | Test Condition    | LEX S                        | No.2                         | LOQ                          | Limit                 |                       |
| NLIEK WHITEK WAL | TER WALTER WALTE  | 1 <sup>st</sup><br>Migration | 2 <sup>nd</sup><br>Migration | 3 <sup>rd</sup><br>Migration | (mg/dm <sup>2</sup> ) | (mg/dm <sup>2</sup> ) |
| 3% Acetic Acid   | 100°C for 2 hours | ND                           | ND                           | ND -                         | 50t3 50th             | 10                    |
| 10% Ethanol      | 100°C for 2 hours | ND                           | ND ND                        | ND                           | 3                     | 10                    |

#### Note:

- 1. Test method: With reference to BS EN 1186-1: 2002 and BS EN 1186-3: 2002.
- 2. "mg/dm2" = Milligram per square decimetre
- 3. "°C" = Celsius degree
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752, (EU) 2019/37 and (EU) 2020/1245.

| Ford Circulant | Tack Condition              | Result | (mg/kg) | LOQ     | Limit   |  |
|----------------|-----------------------------|--------|---------|---------|---------|--|
| Food Simulant  | ood Simulant Test Condition |        | No.4    | (mg/kg) | (mg/kg) |  |
| 3% Acetic Acid | 100°C for 2 hours           | ND     | ND ND   | 20      | 60      |  |
| 10% Ethanol    | 100°C for 2 hours           | ND     | ND +    | 20      | 60      |  |

- 1. Test method: With reference to BS EN 1186-1: 2002 and BS EN 1186-3: 2002.
- 2. "mg/kg" = Milligram per kilogram of foodstuff in contact with
- 3. "°C" = Celsius degree
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from Council of Europe Resolution AP (2004)4.



2. Specific Migration of heavy metal

|                                  | 20, 20,                      | Result(mg/kg)                | WILLER MULTER                | White white |                          |  |
|----------------------------------|------------------------------|------------------------------|------------------------------|-------------|--------------------------|--|
| Test Items                       | ALTER WALTE                  | No.1                         | - 14                         | LOQ (mg/kg) | Limit (mg/kg)            |  |
| whi we the the till a            | 1 <sup>st</sup><br>Migration | 2 <sup>nd</sup><br>Migration | 3 <sup>rd</sup><br>Migration | (g/i.g/     | Limit (mg/kg)            |  |
| Specific migration of Nickel     | ND                           | ND ND                        | ND                           | 0.01        | 0.02                     |  |
| Specific migration of Aluminium  | J/ND J                       | ND                           | ND                           | 0.1         | t must mi                |  |
| Specific migration of Barium     | ND                           | ND                           | ND                           | 0.1         | 1                        |  |
| Specific migration of Cobalt     | ND                           | ND                           | ND                           | 0.01        | 0.05                     |  |
| Specific migration of Copper     | ND                           | ND                           | ND                           | 0.1         | 5                        |  |
| Specific migration of Iron       | ND                           | ND                           | ND                           | 0.1         | 48                       |  |
| Specific migration of Lithium    | ND                           | ND                           | ND ND                        | 0.01        | 0.6                      |  |
| Specific migration of Manganese  | ND                           | ND                           | ND ND                        | 0.01        | 0.6                      |  |
| Specific migration of Zinc       | ND                           | ND                           | ND                           | 0.1         | 5 (1)                    |  |
| Specific migration of Antimony   | ND A                         | ND                           | ND                           | 0.01        | 0.04                     |  |
| Specific migration of Arsenic    | ND                           | TEND TEN                     | ND                           | 0.01        | Not detected<br>(<0.01)  |  |
| Specific migration of Cadmium    | ND                           | ND                           | ND NIT                       | 0.002       | Not detected<br>(<0.002) |  |
| Specific migration of Chromium   | ND                           | ND                           | ND ND                        | 0.01        | Not detected<br>(<0.01)  |  |
| Specific migration of Mercury    | ND                           | ND                           | ND                           | 0.01        | Not detected<br>(<0.01)  |  |
| Specific migration of Lead       | ND                           | ND                           | ND                           | 0.01        | Not detected<br>(<0.01)  |  |
| Specific migration of Europeum   | ND                           | ND                           | ND ND                        | 0.02        | - 13                     |  |
| Specific migration of Gadolinium | ND                           | ND                           | ND TO                        | 0.02        | Sur 0.05                 |  |
| Specific migration of Lanthanum  | ND                           | ND                           | ND                           | 0.02        | Sum<0.05                 |  |
| Specific migration of Terbium    | ND                           | ND N                         | ND                           | 0.02        | it it                    |  |



|                                  | 70, 70,                      | Result(mg/kg)                | WITE WALLE                   | WILL WILL     |                       |  |
|----------------------------------|------------------------------|------------------------------|------------------------------|---------------|-----------------------|--|
| Test Items                       | ALTER MALTE                  | No.2                         | 40                           | LOQ (mg/kg)   | Limit (mg/kg)         |  |
| with with the lifet w            | 1 <sup>st</sup><br>Migration | 2 <sup>nd</sup><br>Migration | 3 <sup>rd</sup><br>Migration | . Log (mg/kg) | Limit (mg/kg)         |  |
| Specific migration of Nickel     | ND                           | ND OF                        | ND                           | 0.01          | 0.02                  |  |
| Specific migration of Aluminium  | ND W                         | ND                           | ND                           | 0.1           | t 11 1                |  |
| Specific migration of Barium     | ND                           | ND                           | ND                           | 0.1           | 1                     |  |
| Specific migration of Cobalt     | ND                           | ND                           | ND OF                        | 0.01          | 0.05                  |  |
| Specific migration of Copper     | ND                           | an ND an                     | ND                           | 0.1           | 5                     |  |
| Specific migration of Iron       | ND                           | ND                           | ND                           | 0.1           | 48                    |  |
| Specific migration of Lithium    | ND                           | ND                           | ND                           | 0.01          | 0.6                   |  |
| Specific migration of Manganese  | ND                           | ND                           | ND                           | 0.01          | 0.6                   |  |
| Specific migration of Zinc       | ND                           | ND                           | ND                           | 0.1           | 5 0                   |  |
| Specific migration of Antimony   | ND (                         | ND                           | ND                           | 0.01          | 0.04                  |  |
| Specific migration of Arsenic    | ND                           | ND                           | ND                           | 0.01          | Not detected (<0.01)  |  |
| Specific migration of Cadmium    | ND                           | LITE ND LITE                 | ND                           | 0.002         | Not detected (<0.002) |  |
| Specific migration of Chromium   | ND                           | ND ND                        | ND IT                        | 0.01          | Not detected (<0.01)  |  |
| Specific migration of Mercury    | ND                           | ND                           | ND ND                        | 0.01          | Not detected (<0.01)  |  |
| Specific migration of Lead       | ND                           | ND                           | ND                           | 0.01          | Not detected (<0.01)  |  |
| Specific migration of Europeum   | ND                           | ND                           | ND                           | 0.02          | EF CEF                |  |
| Specific migration of Gadolinium | ND                           | ND                           | an ND and                    | 0.02          | Sum of of             |  |
| Specific migration of Lanthanum  | ND                           | ND                           | ND TO                        | 0.02          | Sum<0.05              |  |
| Specific migration of Terbium    | ND                           | ND                           | ND                           | 0.02          | At All                |  |



|                                  | 20, 20,                      | Result(mg/kg)                | WITE WITE                    | White white   |                       |  |
|----------------------------------|------------------------------|------------------------------|------------------------------|---------------|-----------------------|--|
| Test Items                       | NLTER WALTE                  | No.3                         | 24                           | LOQ (mg/kg)   | Limit (mg/kg)         |  |
| whi whi whi itek is              | 1 <sup>st</sup><br>Migration | 2 <sup>nd</sup><br>Migration | 3 <sup>rd</sup><br>Migration | _ Log (mg/kg) | Limit (mg/kg)         |  |
| Specific migration of Nickel     | ND                           | ND O                         | ND                           | 0.01          | 0.02                  |  |
| Specific migration of Aluminium  | ND N                         | ND                           | ND                           | 0.1           | t 11 1                |  |
| Specific migration of Barium     | ND                           | ND                           | ND                           | 0.1           | 1                     |  |
| Specific migration of Cobalt     | ND                           | ND                           | ND OF                        | 0.01          | 0.05                  |  |
| Specific migration of Copper     | ND                           | an ND an                     | ND                           | 0.1           | 5                     |  |
| Specific migration of Iron       | ND                           | ND                           | ND                           | 0.1           | 48                    |  |
| Specific migration of Lithium    | ND                           | ND                           | ND                           | 0.01          | 0.6                   |  |
| Specific migration of Manganese  | ND                           | ND                           | ND ND                        | 0.01          | 0.6                   |  |
| Specific migration of Zinc       | ND                           | ND                           | ND                           | 0.1           | 5                     |  |
| Specific migration of Antimony   | ND (                         | ND                           | ND                           | 0.01          | 0.04                  |  |
| Specific migration of Arsenic    | ND                           | ND                           | ND                           | 0.01          | Not detected (<0.01)  |  |
| Specific migration of Cadmium    | ND                           | LITE ND LITE                 | ND                           | 0.002         | Not detected (<0.002) |  |
| Specific migration of Chromium   | ND                           | ND ND                        | ND IT                        | 0.01          | Not detected (<0.01)  |  |
| Specific migration of Mercury    | ND                           | ND                           | ND TO                        | 0.01          | Not detected (<0.01)  |  |
| Specific migration of Lead       | ND                           | ND                           | ND                           | 0.01          | Not detected (<0.01)  |  |
| Specific migration of Europeum   | ND                           | ND                           | ND                           | 0.02          | Et JEt                |  |
| Specific migration of Gadolinium | ND                           | ND                           | an ND and                    | 0.02          | 0                     |  |
| Specific migration of Lanthanum  | ND                           | ND                           | ND ND                        | 0.02          | Sum<0.05              |  |
| Specific migration of Terbium    | ND ND                        | ND                           | ND                           | 0.02          | LET LEY               |  |



|                                  | 20, 20,                      | Result(mg/kg                 | WITER WILLES                 | Limit (mg/kg) |                       |  |
|----------------------------------|------------------------------|------------------------------|------------------------------|---------------|-----------------------|--|
| Test Items                       | OLIER WALTE                  | No.4                         | LOQ (mg/kg)                  |               |                       |  |
| the tex tex rest in a            | 1 <sup>st</sup><br>Migration | 2 <sup>nd</sup><br>Migration | 3 <sup>rd</sup><br>Migration | Log (mg/ng)   | Limit (mg/kg)         |  |
| Specific migration of Nickel     | ND                           | ND                           | ND                           | 0.01          | 0.02                  |  |
| Specific migration of Aluminium  | ND W                         | ND                           | ND                           | 0.1           | t 51t 55              |  |
| Specific migration of Barium     | ND                           | ND                           | ND                           | 0.1           | 1                     |  |
| Specific migration of Cobalt     | ND                           | ND                           | ND OF                        | 0.01          | 0.05                  |  |
| Specific migration of Copper     | ND                           | ND ND                        | ND                           | 0.1           | 5                     |  |
| Specific migration of Iron       | ND                           | ND                           | ND                           | 0.1           | 48                    |  |
| Specific migration of Lithium    | ND                           | ND                           | ND                           | 0.01          | 0.6                   |  |
| Specific migration of Manganese  | ND                           | ND                           | ND                           | 0.01          | 0.6                   |  |
| Specific migration of Zinc       | ND                           | ND                           | ND                           | 0.1           | 5                     |  |
| Specific migration of Antimony   | ND (                         | ND                           | ND                           | 0.01          | 0.04                  |  |
| Specific migration of Arsenic    | ND -                         | ND                           | ND                           | 0.01          | Not detected (<0.01)  |  |
| Specific migration of Cadmium    | ND                           | ALTE ND LITE                 | ND                           | 0.002         | Not detected (<0.002) |  |
| Specific migration of Chromium   | ND                           | ND of                        | IND IN                       | 0.01          | Not detected (<0.01)  |  |
| Specific migration of Mercury    | ND                           | ND                           | ND TO                        | 0.01          | Not detected (<0.01)  |  |
| Specific migration of Lead       | ND                           | ND                           | ND                           | 0.01          | Not detected (<0.01)  |  |
| Specific migration of Europeum   | ND                           | ND                           | ND                           | 0.02          | Ek JEK                |  |
| Specific migration of Gadolinium | ND                           | ND                           | ND ND                        | 0.02          | 0 0.05                |  |
| Specific migration of Lanthanum  | ND                           | ND                           | ND ND                        | 0.02          | Sum<0.05              |  |
| Specific migration of Terbium    | ND W                         | ND                           | ND                           | 0.02          | All All               |  |

- 1. Test Method: With reference to BS EN 13130-1: 2004, sample preparation in 3% acetic acid at 100°C for 6 hours, analysis was performed by ICP-MS.
- 2. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.



3. Migration of N-Nitrosamine and N-Nitrosatable Substances

| Mur. Mur. Mr. Mr.                                         | Result (mg/kg) |                           |  |  |  |  |
|-----------------------------------------------------------|----------------|---------------------------|--|--|--|--|
| Test Items                                                | No.3           |                           |  |  |  |  |
| A LET THE THE STEET ON                                    | N-nitrosamines | N-nitrosatable substances |  |  |  |  |
| N-nitrosodimethylamine (NDMA)                             | <0.01          | <0.1                      |  |  |  |  |
| N-nitrosodiethylamine (MDEA)                              | <0.01          | <0.1                      |  |  |  |  |
| N-nitrosodipropylamine (NDPA)                             | <0.01          | <0.1                      |  |  |  |  |
| N-nitrosodibutylamine (NDBA)                              | <0.01          | <0.1                      |  |  |  |  |
| N-nitrosopiperidine (NPIP)                                | <0.01          | + 10+ 10+<0.1             |  |  |  |  |
| N-nitrosopyrrolidine (NPYR)                               | <0.01          | <0.1                      |  |  |  |  |
| N-nitrosomorpholine (NMOR)                                | <0.01          | <0.1                      |  |  |  |  |
| N-nitrosomethylphenylamine (NMPhA)                        | <0.01          | <0.1                      |  |  |  |  |
| N-nitrosoethylphenylamine (NEPhA)                         | <0.01          | <0.1                      |  |  |  |  |
| N-nitrosodibenzylamine (NDBzA)                            | <0.01          | <0.1                      |  |  |  |  |
| N-nitroso-n, n-di-(7-methyloctyloctyl) amine (NDINA)      | <0.01          | White <0.1 White          |  |  |  |  |
| Sum of above N-nitrosamines and N-nitrosatable substances | <0.01          | <0.1                      |  |  |  |  |
| Limit of the tief will                                    | JULY 10.01     | 0.1                       |  |  |  |  |



| men men men men men                                       | Res               | sult (mg/kg)             |  |
|-----------------------------------------------------------|-------------------|--------------------------|--|
| Test Items                                                | 70° 711° 70° 4    | No.4                     |  |
| A LET THE THE LITTER ON                                   | N-nitrosamines    | N-nitrosatable substance |  |
| N-nitrosodimethylamine (NDMA)                             | <0.01             | <0.1                     |  |
| N-nitrosodiethylamine (MDEA)                              | <0.01             | <0.1                     |  |
| N-nitrosodipropylamine (NDPA)                             | (1.01 of the same | <0.1                     |  |
| N-nitrosodibutylamine (NDBA)                              | <0.01             | 50 and <0.1 M            |  |
| N-nitrosopiperidine (NPIP)                                | <0.01             | 4 (c) <0.1               |  |
| N-nitrosopyrrolidine (NPYR)                               | <0.01             | <0.1                     |  |
| N-nitrosomorpholine (NMOR)                                | <0.01             | <0.1                     |  |
| N-nitrosomethylphenylamine (NMPhA)                        | <0.01             | <0.1                     |  |
| N-nitrosoethylphenylamine (NEPhA)                         | <0.01             | <0.1                     |  |
| N-nitrosodibenzylamine (NDBzA)                            | <0.01             | <0.1                     |  |
| N-nitroso-n, n-di-(7-methyloctyloctyl) amine (NDINA)      | <0.01             | White <0.1 Pt White      |  |
| Sum of above N-nitrosamines and N-nitrosatable substances | <0.01             | <0.1                     |  |
| Limit At 18th 18th 18th 18th                              | with 10.01        | 0.1                      |  |

- 1. Test method: With reference to EN 12868:2017, extraction with Artificial saliva at 40°C for 24 hours, followed by GC-MS analysis.
- 2. "mg/kg" = Milligrams per kilogram
- 3. "<" = less than
- 4. The specification was quoted from Council of Europe Resolution AP(2004)4.



# 4. Bisphenol A Content

| Took House  | 2/12 2/1 | Result | (mg/kg) | 1.00 (mg/kg) | Limit (mag/leg) |               |
|-------------|----------|--------|---------|--------------|-----------------|---------------|
| Test Item   | No.1     | No.2   | No.3    | No.4         | LOQ (mg/kg)     | Limit (mg/kg) |
| Bisphenol A | ND.      | ND     | ND      | ND           | 0.1             | Not Detected  |

#### Note:

- 1. Test Method: With reference to EPA3550C:2007, analysis was performed by GC-MS.
- 2. "mg/kg" = milligram per kilogram
- 3. LOQ = Limit of quantitation
- 4. ND = Not Detected or lower than limit of quantitation
- 5. The specification was quoted from Law No 2012-1442.

# 5. Specific Migration of Primary Aromatic Amines

| my my my                             | R                            | tesult (mg/kg                | g) (                         | The Mill Mury | 145 141 1         |
|--------------------------------------|------------------------------|------------------------------|------------------------------|---------------|-------------------|
| Test Item                            | No.5                         |                              |                              | LOQ (mg/kg)   | Limit (mg/kg)     |
|                                      | 1 <sup>st</sup><br>Migration | 2 <sup>nd</sup><br>Migration | 3 <sup>rd</sup><br>Migration | AN WATER      | LIEK WALTER WALTE |
| Migration of Primary aromatic amines | ND                           | ND N                         | ND                           | 0.01          | Not Detected      |

|                                      | R                            | esult (mg/k                  | g)                           | ALTE        |               |  |
|--------------------------------------|------------------------------|------------------------------|------------------------------|-------------|---------------|--|
| Test Item                            | No.6                         |                              |                              | LOQ (mg/kg) | Limit (mg/kg) |  |
|                                      | 1 <sup>st</sup><br>Migration | 2 <sup>nd</sup><br>Migration | 3 <sup>rd</sup><br>Migration | White while |               |  |
| Migration of Primary aromatic amines | ND                           | ND                           | ND                           | 0.01        | Not Detected  |  |

- 1. Test Method: With reference to § 64 LFGB L No. 00.00-6, analysis was performed by UV-visible Spectrometer.
- 2. Test Condition and simulant: 3% acetic acid at 100°C for 6 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.



| Test Item                            | R                            | esult (mg/k                  | g) /                         | LOQ (mg/kg) | Limit (mg/kg) |  |
|--------------------------------------|------------------------------|------------------------------|------------------------------|-------------|---------------|--|
| THE TIES WITH MITTER                 | 1 <sup>st</sup><br>Migration | 2 <sup>nd</sup><br>Migration | 3 <sup>rd</sup><br>Migration |             | Tet Tet       |  |
| Migration of Primary aromatic amines | ND                           | ND                           | ND                           | 0.01        | Not Detected  |  |

| the test tiest with the              | et nite R                    | esult (mg/k                  | g) V                         | 71. 21.           | et let it      |  |
|--------------------------------------|------------------------------|------------------------------|------------------------------|-------------------|----------------|--|
| Test Item                            | - Let                        | No.8                         | EK WALTER                    | LOQ (mg/kg)       | Limit (mg/kg)  |  |
| MUNITER MULTER MULTER WALTE          | 1 <sup>st</sup><br>Migration | 2 <sup>nd</sup><br>Migration | 3 <sup>rd</sup><br>Migration | LIEK WALTER WALTE | MULTER MULTERY |  |
| Migration of Primary aromatic amines | ND                           | ND                           | ND                           | 0.01              | Not Detected   |  |

- 1. Test Method: With reference to § 64 LFGB L No. 00.00-6, analysis was performed by UV-visible Spectrometer.
- 2. Test Condition and simulant: 3% acetic acid at 100°C for 6 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from Council of Europe Resolution AP (2004)4.



6. Specific Migration of Primary Aromatic Amines (single substance)\*

| entity with the min                           | 24 2.    | , J.F                        | Result(mg/ko                 | g) - C                       | WITE AL | Limit   |
|-----------------------------------------------|----------|------------------------------|------------------------------|------------------------------|---------|---------|
| Test Items                                    | CAS No.  | The .                        | No.5                         | 10,                          | LOQ     |         |
| restitems                                     | CAS NO.  | 1 <sup>st</sup><br>Migration | 2 <sup>nd</sup><br>Migration | 3 <sup>rd</sup><br>Migration | (mg/kg) | (mg/kg) |
| 2-methoxyaniline                              | 90-04-0  | ND                           | + ND +                       | ND                           | 0.002   | ND      |
| 4,4'-Diaminobiphenyl                          | 92-87-5  | ND                           | ND                           | ND                           | 0.002   | ND      |
| 4,4'-Methylen-bis-(2-chloroaniline)           | 101-14-4 | ND                           | ND                           | √ ND ✓                       | 0.002   | ND      |
| 4,4'-Diaminodiphenylmethane                   | 101-77-9 | ND                           | ₩D W                         | ND                           | 0.002   | ND      |
| 4,4'-Oxydianiline                             | 101-80-4 | ND                           | ND                           | ND                           | 0.002   | ND      |
| 4-chloroaniline                               | 106-47-8 | ND                           | ND                           | ND                           | 0.002   | ND -    |
| 3,3'-Dimethoxybenzidine                       | 119-90-4 | ND                           | ND C                         | ND                           | 0.002   | ND      |
| 3,3'-Dimethylbenzidine                        | 119-93-7 | ND N                         | ND                           | ND                           | 0.002   | ND      |
| 2-Methoxy-5-methylaniline                     | 120-71-8 | ND                           | ND                           | ND                           | 0.002   | ND N    |
| 2,4,5 – Trimethylaniline                      | 137-17-7 | ND                           | ND                           | ND                           | 0.002   | ND      |
| 4,4'-Thiodianiline                            | 139-65-1 | ND -                         | ND                           | ND                           | 0.002   | ND      |
| 4-aminoazobenzene                             | 60-09-3  | ND                           | ND                           | ND                           | 0.002   | → ND    |
| 2,4-diaminoanisol                             | 615-05-4 | ND                           | ND (                         | ND                           | 0.002   | ND      |
| 4,4'-diamino-3,3'-<br>dimethyldiphenylmethane | 838-88-0 | ND                           | ND                           | ND                           | 0.002   | ND      |
| 2-Naphthylamine                               | 91-59-8  | ND                           | ND                           | ND                           | 0.002   | ND      |
| 3,3'-Dichlorobenzidine                        | 91-94-1  | ND (                         | ND                           | ND O                         | 0.002   | ND.     |
| 4-Aminobiphenyl                               | 92-67-1  | ND                           | ND                           | ND                           | 0.002   | ND      |
| 2-methylaniline                               | 95-53-4  | - ND                         | ND                           | ND                           | 0.002   | ND      |
| 4-chloro-o-Toluidine                          | 95-69-2  | ND                           | ND                           | ND                           | 0.002   | , ND    |
| 2,4-Toluylendiamine                           | 95-80-7  | ND                           | ND O                         | ND                           | 0.002   | ND      |
| 2,4-Aminoazotoluene                           | 97-56-3  | ND a                         | ND                           | ND                           | 0.002   | ND      |
| 2-Amino-4-nitrotoluene                        | 99-55-8  | ND                           | ND                           | ND                           | 0.002   | √ ND √  |
| 2,4-Xylidin                                   | 95-68-1  | ND                           | ND                           | ND                           | 0.002   | ND      |
| 2,6-Xylidin                                   | 87-62-7  | ND O                         | ND                           | ND                           | 0.002   | ND      |
| 1, 3 - phenylene diamine                      | 108-45-2 | ND                           | ND                           | ND                           | 0.002   | ND.     |



| e aver mus mor mus                            | 211 20   | Result(mg/kg) No.6           |                              |       | LOQ   | Limit   |
|-----------------------------------------------|----------|------------------------------|------------------------------|-------|-------|---------|
| Test Items                                    | CAS No.  |                              |                              |       |       |         |
| restitents                                    | CAS NO.  | 1 <sup>st</sup><br>Migration | 2 <sup>nd</sup><br>Migration |       |       | (mg/kg) |
| 2-methoxyaniline                              | 90-04-0  | ND                           | ND -                         | ND    | 0.002 | ND      |
| 4,4'-Diaminobiphenyl                          | 92-87-5  | ND                           | ND                           | ND    | 0.002 | ND      |
| 4,4'-Methylen-bis-(2-chloroaniline)           | 101-14-4 | ND                           | ND                           | ≪ND ≪ | 0.002 | ND      |
| 4,4'-Diaminodiphenylmethane                   | 101-77-9 | ND                           | ND ND                        | ND    | 0.002 | ND      |
| 4,4'-Oxydianiline                             | 101-80-4 | ND                           | ND                           | ND    | 0.002 | ND      |
| 4-chloroaniline                               | 106-47-8 | ND                           | ND                           | ND    | 0.002 | ND      |
| 3,3'-Dimethoxybenzidine                       | 119-90-4 | ND                           | ND O                         | ND    | 0.002 | ND      |
| 3,3'-Dimethylbenzidine                        | 119-93-7 | ND ND                        | ND                           | ND    | 0.002 | ND      |
| 2-Methoxy-5-methylaniline                     | 120-71-8 | ND                           | ND                           | ND    | 0.002 | ND      |
| 2,4,5 – Trimethylaniline                      | 137-17-7 | ND                           | ND                           | ND    | 0.002 | ND      |
| 4,4'-Thiodianiline                            | 139-65-1 | ND -                         | ND                           | ND    | 0.002 | ND      |
| 4-aminoazobenzene                             | 60-09-3  | ND                           | ND                           | ND    | 0.002 | - ND    |
| 2,4-diaminoanisol                             | 615-05-4 | ND                           | ND S                         | ND    | 0.002 | ND      |
| 4,4'-diamino-3,3'-<br>dimethyldiphenylmethane | 838-88-0 | ND                           | ND                           | ND    | 0.002 | ND      |
| 2-Naphthylamine                               | 91-59-8  | ND                           | ND                           | ND    | 0.002 | ND      |
| 3,3'-Dichlorobenzidine                        | 91-94-1  | ND (                         | ND                           | ND O  | 0.002 | ND      |
| 4-Aminobiphenyl                               | 92-67-1  | ND                           | ND                           | ND    | 0.002 | ND      |
| 2-methylaniline                               | 95-53-4  | ⊢ ND →                       | ND                           | ND    | 0.002 | ND      |
| 4-chloro-o-Toluidine                          | 95-69-2  | ND                           | ND                           | ND    | 0.002 | ND      |
| 2,4-Toluylendiamine                           | 95-80-7  | ND                           | √ ND √                       | ND    | 0.002 | ND      |
| 2,4-Aminoazotoluene                           | 97-56-3  | ND W                         | ND                           | ND    | 0.002 | ND      |
| 2-Amino-4-nitrotoluene                        | 99-55-8  | ND (                         | ND                           | ND N  | 0.002 | ND V    |
| 2,4-Xylidin                                   | 95-68-1  | ND                           | ND                           | ND    | 0.002 | ND      |
| 2,6-Xylidin                                   | 87-62-7  | ND (                         | ND                           | ND    | 0.002 | ND      |
| 1, 3 - phenylene diamine                      | 108-45-2 | ND                           | ND                           | ND    | 0.002 | ND.     |



|                                               | 2/1 2.   | Result(mg/kg)                |                              |                              | WITE OF | Limit   |
|-----------------------------------------------|----------|------------------------------|------------------------------|------------------------------|---------|---------|
| Test Items                                    | CAS No.  | in in                        | No.7                         |                              |         |         |
| 1 GOL HEITIS                                  |          | 1 <sup>st</sup><br>Migration | 2 <sup>nd</sup><br>Migration | 3 <sup>rd</sup><br>Migration | (mg/kg) | (mg/kg) |
| 2-methoxyaniline                              | 90-04-0  | ND                           | + ND +                       | ND                           | 0.002   | ND      |
| 4,4'-Diaminobiphenyl                          | 92-87-5  | ND                           | ND                           | ND                           | 0.002   | ND      |
| 4,4'-Methylen-bis-(2-chloroaniline)           | 101-14-4 | ND                           | ND                           | ≪ND ≪                        | 0.002   | ND      |
| 4,4'-Diaminodiphenylmethane                   | 101-77-9 | ND                           | and a                        | ND                           | 0.002   | ND      |
| 4,4'-Oxydianiline                             | 101-80-4 | ND                           | ND                           | ND                           | 0.002   | ND      |
| 4-chloroaniline                               | 106-47-8 | ND                           | ND                           | ND                           | 0.002   | ND      |
| 3,3'-Dimethoxybenzidine                       | 119-90-4 | ND                           | ND C                         | ND                           | 0.002   | ND      |
| 3,3'-Dimethylbenzidine                        | 119-93-7 | an ND an                     | ND                           | ND                           | 0.002   | ND      |
| 2-Methoxy-5-methylaniline                     | 120-71-8 | ND                           | ND                           | ND                           | 0.002   | ND      |
| 2,4,5 – Trimethylaniline                      | 137-17-7 | ND                           | ND                           | ND                           | 0.002   | ND      |
| 4,4'-Thiodianiline                            | 139-65-1 | ND -                         | ND                           | ND                           | 0.002   | ND      |
| 4-aminoazobenzene                             | 60-09-3  | ND                           | ND                           | ND                           | 0.002   | - ND    |
| 2,4-diaminoanisol                             | 615-05-4 | ND                           | ND (                         | ND                           | 0.002   | ND      |
| 4,4'-diamino-3,3'-<br>dimethyldiphenylmethane | 838-88-0 | ND                           | ND                           | ND                           | 0.002   | ND      |
| 2-Naphthylamine                               | 91-59-8  | ND                           | ND                           | ND                           | 0.002   | ND      |
| 3,3'-Dichlorobenzidine                        | 91-94-1  | ND (                         | ND                           | ND                           | 0.002   | ND      |
| 4-Aminobiphenyl                               | 92-67-1  | ND                           | ND                           | ND                           | 0.002   | ND      |
| 2-methylaniline                               | 95-53-4  | + ND                         | ND                           | ND                           | 0.002   | ND      |
| 4-chloro-o-Toluidine                          | 95-69-2  | ND                           | ND                           | ND                           | 0.002   | ND      |
| 2,4-Toluylendiamine                           | 95-80-7  | ND                           | ND O                         | ND                           | 0.002   | ND      |
| 2,4-Aminoazotoluene                           | 97-56-3  | AND AN                       | ND                           | ND                           | 0.002   | ND      |
| 2-Amino-4-nitrotoluene                        | 99-55-8  | ND                           | ND                           | ND N                         | 0.002   | ND V    |
| 2,4-Xylidin                                   | 95-68-1  | ND                           | ND                           | ND                           | 0.002   | ND      |
| 2,6-Xylidin                                   | 87-62-7  | ND C                         | ND                           | ND                           | 0.002   | ND      |
| 1, 3 - phenylene diamine                      | 108-45-2 | ND                           | ND                           | ND                           | 0.002   | ND.     |



| in with my mer war                            | 211 20   | Result(mg/kg) No.8           |                              |                              | LOQ     | Limit   |
|-----------------------------------------------|----------|------------------------------|------------------------------|------------------------------|---------|---------|
| Test Items                                    | CAS No.  |                              |                              |                              |         |         |
| rescitents                                    |          | 1 <sup>st</sup><br>Migration | 2 <sup>nd</sup><br>Migration | 3 <sup>rd</sup><br>Migration | (mg/kg) | (mg/kg) |
| 2-methoxyaniline                              | 90-04-0  | ND                           | , ND                         | ND                           | 0.002   | ND      |
| 4,4'-Diaminobiphenyl                          | 92-87-5  | ND                           | ND                           | ND                           | 0.002   | ND      |
| 4,4'-Methylen-bis-(2-chloroaniline)           | 101-14-4 | ND                           | ND                           | ND C                         | 0.002   | ND      |
| 4,4'-Diaminodiphenylmethane                   | 101-77-9 | ND                           | JUND O                       | ND                           | 0.002   | ND      |
| 4,4'-Oxydianiline                             | 101-80-4 | ND                           | ND                           | ND                           | 0.002   | ND      |
| 4-chloroaniline                               | 106-47-8 | ND                           | ND                           | ND                           | 0.002   | ND      |
| 3,3'-Dimethoxybenzidine                       | 119-90-4 | ND                           | ND O                         | ND                           | 0.002   | ND      |
| 3,3'-Dimethylbenzidine                        | 119-93-7 | ND ND                        | ND                           | ND                           | 0.002   | ND      |
| 2-Methoxy-5-methylaniline                     | 120-71-8 | ND                           | ND                           | ND                           | 0.002   | ND S    |
| 2,4,5 – Trimethylaniline                      | 137-17-7 | ND                           | ND                           | ND                           | 0.002   | ND      |
| 4,4'-Thiodianiline                            | 139-65-1 | ND                           | ND                           | ND                           | 0.002   | ND      |
| 4-aminoazobenzene                             | 60-09-3  | ND                           | ND ND                        | ND                           | 0.002   | - ND    |
| 2,4-diaminoanisol                             | 615-05-4 | ND                           | ND (                         | ND                           | 0.002   | ND      |
| 4,4'-diamino-3,3'-<br>dimethyldiphenylmethane | 838-88-0 | ND                           | ND                           | ND                           | 0.002   | ND      |
| 2-Naphthylamine                               | 91-59-8  | ND                           | ND                           | ND                           | 0.002   | ND      |
| 3,3'-Dichlorobenzidine                        | 91-94-1  | ND (                         | ND                           | ND ND                        | 0.002   | ND      |
| 4-Aminobiphenyl                               | 92-67-1  | ND                           | ND                           | ND                           | 0.002   | ND      |
| 2-methylaniline                               | 95-53-4  | + ND                         | ND                           | ND                           | 0.002   | ND      |
| 4-chloro-o-Toluidine                          | 95-69-2  | ND                           | ND                           | ND                           | 0.002   | → ND    |
| 2,4-Toluylendiamine                           | 95-80-7  | ND                           | √ ND √                       | ND                           | 0.002   | ND      |
| 2,4-Aminoazotoluene                           | 97-56-3  | ND W                         | ND                           | ND                           | 0.002   | ND      |
| 2-Amino-4-nitrotoluene                        | 99-55-8  | ND                           | ND                           | ND                           | 0.002   | ND      |
| 2,4-Xylidin                                   | 95-68-1  | ND                           | ND                           | ND                           | 0.002   | ND      |
| 2,6-Xylidin                                   | 87-62-7  | of ND                        | ND                           | ND                           | 0.002   | ND      |
| 1, 3 - phenylene diamine                      | 108-45-2 | ND                           | ND                           | ND                           | 0.002   | ND.     |

- 1. Test Method: With reference to BS EN 13130-1:2004, analysis was performed by LC-MS-MS.
- 2. Test Condition and simulant: 3% acetic acid at 100°C for 6 hours.
- 3. "mg/kg" = milligram per kilogram of foodstuff in contact with
- 4. LOQ = Limit of quantitation
- 5. ND = Not Detected or lower than limit of quantitation
- 6. The specification was quoted from (EU) No 10/2011 and its amendments (EU) 2016/1416, (EU) 2017/752 and (EU) 2020/1245.



# Sample Photo:



Photograph of parts tested:

| No.   | Photo of testing part                                                                      | Parts Description    | Client Claimed Material |
|-------|--------------------------------------------------------------------------------------------|----------------------|-------------------------|
|       |                                                                                            | tet tet ritet o      | TEX WITER WITER WITE    |
| WALTE |                                                                                            | White plastic        | MULTER WHITER           |
|       |                                                                                            | MULTER MULTER MULTER | White white white w     |
| 111   | 5 , 5 , 7 s , 10 11 12 13 11 5 16 12 18 10 20 21 22 22 22 23 23 23 23 23 24 25 26 27 28 23 | One with the course  | After Murit Muri Mu     |



| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Photo of testing part                                                                                                                                           | Parts Description  | Client Claimed Material                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------|
| white was a second of the seco |                                                                                                                                                                 | Blue plastic       | JANUTER WHITEK           |
| WILLEY ALTER WILL WILL WILL WILL WILL WILL WILL WIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 2 3 4 5 6 7 8 9 1                                                                                                                                             | Blue rubber        | TPR Whitek |
| JUNE WALLER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 2 3 4 5 6 7 8 9 10 11 12 13 14                                                                                                                                | Transparent rubber | TPR TELL INTERVIOLEN                                                                                  |
| TEX WAS STORY OF THE STREET OF | 5. 5. 7 8 9 10 H R 3 H 15 16 H 18 19 20 22 22 22 25 27 22 20 22 22 22 25 27 22 20 22 22 22 25 27 22 20 20 22 22 20 25 27 22 20 20 20 20 20 20 20 20 20 20 20 20 | White plastic      | PE<br>(Sample received at<br>2022-11-25)                                                              |



| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Photo of testing part | Parts Description  | Client Claimed Material                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|-------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Blue plastic       | PP<br>(Sample received at<br>2022-11-25)  |
| MITER<br>NUTER<br>NUTER<br>NUTER<br>NUTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | Blue rubber        | TPR<br>(Sample received at<br>2022-11-25) |
| AND THE MAN TH |                       | Transparent rubber | TPR<br>(Sample received at<br>2022-11-25) |

#### Remarks:

- 1. The results shown in this test report refer only to the sample(s) tested;
- 2. This test report cannot be reproduced, except in full, without prior written permission of the company;
- 3. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver;
- 4. The Applicant name and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which Waltek hasn't verified;
- 5. If the report is not stamped with the accreditation recognized seal, it will only be used for scientific research, education, and internal quality control activities, and is not used for the purpose of issuing supporting data to the society.

===== End of Report =====