

TEST REPORT

Reference No	:-3	WTF24F04096689N
Applicant	: 3	Mid Ocean Brands B.V.
Address	an" an	7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon Hong Kong
Manufacturer	× .	I want the set of the set of the
Address	¢.	I set when when when we are the set
Product Name	:	Round wireless speaker LED
Model No	- :	MO9062
Test specification	and's	Photobiological safety of lamps and lamp systems EN 62471:2008 IEC 62471:2006 (First Edition)
Date of Receipt sample	de la	2024-05-08
Date of Test	;	2024-05-08 to 2024-05-24
Date of Issue	÷.	2024-05-27
Test Report Form No	:	WPL-62471A-08A
Test Result	1	Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of approver.

Prepared By: Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink Machinery City, Xingye 4 Road, Guanglong Industrial Park, Chihua Neighborhood Committee, Chencun Town, Shunde District, Foshan, Guangdong, China Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Tested by:

filliam chen

Lillian Chen

Approved by:

1. Vm 24

Finn Yu

Test item description:	Round wireless speaker LED	

Trade Mark None

General remarks:

"(See Enclosure #)" refers to additional information appended to the report.

"(See remark #)" refers to a remark appended to the report.

"(See appended table)" refers to a table appended to the report.

Throughout this report a comma (point) is used as the decimal separator.

Use of uncertainty of measurement for decisions on conformity (decision rule): No decision rule is specified by the standard, when comparing the measurement result with the applicable limit according to the specification in that standard. The decisions on conformity are made without applying the measurement uncertainty ("simple acceptance" decision rule, previously known as "accuracy method").

Remark:

- 1. Measurement was conducted at constant voltage 5V and at a stable ambient temperature 25°C±5°C.
- All models are similar except to model name, colour temperature and enclosure shape are different. Unless otherwise specified, all tests were performed on model MO9062 to represent the other similar models.
- 3. Detail information for models covered in this report as below:

Item	Model	Ratings	ССТ	Driver
1	MO9062	DC 5V, 3W		

Summary of testing:					
The tests were conducted under luminaire/lamp/LED rating. All tests were carried out at model MO9062. For model MO9062 (white) α = 0.0765 radian, distance between lamp and sensor: 200.0 mm.					
For model MO9062 (blue)					
α = 0.0995 radian, distance between lamp and senso	r: 200.0 mm.				
and water water water and the					
Test item particulars	: See below				
Tested lamp	continuous wave lamps				
Tested lamp system	No lamp system				
Lamp classification group	exempt⊠ risk 1⊡ risk 2⊡ risk 3⊡				
Lamp cap	to the state				
Bulb	14 AL AND AND AND AND AND AND				
Rated of the lamp	: See model list in page 2				
Furthermore marking on the lamp	None				
Seasoning of lamps according IEC standard	None				
Used measurement instrument	: See page 16				
Temperature by measurement	25 ± 5 °C				
Information for safety use					
Possible test case verdicts:	a at the set set with				

- test case does not apply to the test object.....: N(/A) (Not applicable)
- test object does meet the requirement......: P (Pass)
- test object does not meet the requirement F (Fail)

General product information:

N/A.

<u>.</u>			
Clause	Requirement + Test	Result – Remark	Verdict
4	EXPOSURE LIMITS	an an ar	Р
4.1	General	Star Star Shi	Р
aret and	The exposure limits in this standard is not less than 0,01 ms and not more than any 8-hour period and should be used as guides in the control of exposure	and second sources	Р
et white	Detailed spectral data of a light source are generally required only if the luminance of the source exceeds 10 ⁴ cd m ⁻²	see clause 4.3	Р
4.3	Hazard exposure limits	Star all and	Р
4.3.1	Actinic UV hazard exposure limit for the skin and eye		Р
un ann	The exposure limit for effective radiant exposure is 30 J [·] m ⁻² within any 8-hour period	Martin Martin Martin	P
er word	To protect against injury of the eye or skin from ultraviolet radiation exposure produced by a broadband source, the effective integrated spectral irradiance , E_s , of the light source shall not exceed the levels defined by:	and and and and an	Р
AND ST.	$E_{\rm s} \cdot t = \sum_{200}^{400} \sum_{t} E_{\lambda}(\lambda, t) \cdot S_{\rm UV}(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 30 \qquad \qquad \text{J} \cdot \text{m}^{-2}$	and a survey again	ex Pt
maret and	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye or skin shall be computed by:	and want	P
	$t_{\max} = \frac{30}{E_s} \qquad s$	survey where a	Р
4.3.2	Near-UV hazard exposure limit for eye	* 5 ¹⁰ 5 ¹⁰ 5	Р
warret av	For the spectral region 315 nm to 400 nm (UV-A) the total radiant exposure to the eye shall not exceed 10000 J m ⁻² for exposure times less than 1000 s. For exposure times greater than 1000 s (approximately 16 minutes) the UV-A irradiance for the unprotected eye, E_{UVA} , shall not exceed 10 W m ⁻² .	anticate anticate anticate	P
et and	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye for time less than 1000 s, shall be computed by:	and and and an	Р
MATER	$t_{\max} \le \frac{10000}{E_{\text{UVA}}} \qquad \text{s}$	where where we	P
4.3.3	Retinal blue light hazard exposure limit	See table 4.2	Р
1927 - 1947 2528 - 1925 1946 - 1945	To protect against retinal photochemical injury from chronic blue-light exposure, the integrated spectral radiance of the light source weighted against the blue-light hazard function, $B(\lambda)$, i.e., the blue-light weighted radiance , L _B , shall not exceed the levels defined by:	and and and	P
and a	$L_{\rm B} \cdot t = \sum_{300}^{700} \sum_{t} L_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 10^6 \qquad \rm J \cdot m^{-2} \cdot sr^{-1}$	for t $\leq t_{\text{max}} = \frac{10^6}{L_B}$	Р

WT-510-201-12-A

102

٨

1 20

			T
Clause	Requirement + Test	Result – Remark	Verdict
and the state	$L_{\rm B} = \sum_{300}^{700} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 100 \qquad \qquad {\rm W} \cdot {\rm m}^{-2} \cdot {\rm sr}^{-1}$	and and and	Р
4.3.4	Retinal blue light hazard exposure limit - small source	the second second	Ν
	Thus the spectral irradiance at the eye E_{λ} , weighted against the blue-light hazard function $B(\lambda)$ shall not exceed the levels defined by:	and south south	N
aller Alter	$E_{B} \cdot t = \sum_{300}^{700} \sum_{t} E_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 100 \qquad J \cdot m^{-2}$	and and a	N
SULL -	$E_{B} = \sum_{300}^{700} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 1 \qquad W \cdot m^{-2}$	and and and	N
4.3.5	Retinal thermal hazard exposure limit	with white white	Р
erek yaner ek yanerek	To protect against retinal thermal injury, the integrated spectral radiance of the light source, L_{λ} , weighted by the burn hazard weighting function $R(_{\lambda})$ (from Figure 4.2 and Table 4.2), i.e., the burn hazard weighted radiance, shall not exceed the levels defined by:	and and and and a	Ρ
	$L_{R} = \sum_{380}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{50000}{\alpha \cdot t^{0,25}} \qquad W \cdot m^{-2} \cdot sr^{-1}$	(10 µs ≤ t ≤ 10 s)	P
4.3.6	Retinal thermal hazard exposure limit – weak visual stimulus	1 5 5	Р
ret yours yours	For an infrared heat lamp or any near-infrared source where a weak visual stimulus is inadequate to activate the aversion response, the near infrared (780 nm to 1400 nm) radiance, L_{IR} , as viewed by the eye for exposure times greater than 10 s shall be limited to:	and and and a	P
and a	$L_{\rm IR} = \sum_{780}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{6000}{\alpha} \qquad W \cdot {\rm m}^{-2} \cdot {\rm sr}^{-1}$	2011 - 2011 - 201 101 - 101 - 101	Р
4.3.7	Infrared radiation hazard exposure limits for the eye	m. an in	Р
ana Navara	The avoid thermal injury of the cornea and possible delayed effects upon the lens of the eye (cataractogenesis), ocular exposure to infrared radiation, E_{IR} , over the wavelength range 780 nm to 3000 nm, for times less than 1000 s, shall not exceed:	And AND AND AND A	Ρ
	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 18000 \cdot t^{-0.75} \qquad \rm W \cdot m^{-2}$	aniset aniset and	Р
ne an	For times greater than 1000 s the limit becomes:	STEP STEP WATE	_ 1 ¹ P _ 1 ¹
ster which	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 100 \qquad \rm W \cdot m^{-2}$	of any other and a	I STAR
4.3.8	Thermal hazard exposure limit for the skin	t it it .	< P
and and a	Visible and infrared radiant exposure (380 nm to 3000 nm) of the skin shall be limited to:	where where and	Р

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

WT-510-201-12-A

7

7

4	IEC/EN 62471	and the star	$b_i = 2a_i$
Clause	Requirement + Test	Result – Remark	Verdict
Section 1	$E_{H} \cdot t = \sum_{380}^{3000} \sum_{t} E_{\lambda}(\lambda, t) \cdot \Delta t \cdot \Delta \lambda \le 20000 \cdot t^{0,25} \qquad J \cdot m^{-2}$	50	Р
5	MEASUREMENT OF LAMPS AND LAMP SYSTEMS	m. m. a	Р
5.1	Measurement conditions	with with white	P
cet white	Measurement conditions shall be reported as part of the evaluation against the exposure limits and the assignment of risk classification.	A service service s	P
5.1.1	Lamp ageing (seasoning)	15 15 3	N
the for	Seasoning of lamps shall be done as stated in the appropriate IEC lamp standard.	where where where	N
5.1.2	Test environment	when shere she	- 10° P 50
und white	For specific test conditions, see the appropriate IEC lamp standard or in absence of such standards, the appropriate national standards or manufacturer's recommendations.	and services services.	P
5.1.3	Extraneous radiation	+ 5° 5° 1	S P
White y	Careful checks should be made to ensure that extraneous sources of radiation and reflections do not add significantly to the measurement results.	and an and and	P.
5.1.4	Lamp operation	1. 1. 1.	P
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Operation of the test lamp shall be provided in accordance with:	and show	Р
St. Martin	 the appropriate IEC lamp standard, or 	inter white	N
+	 the manufacturer's recommendation 		P P
5.1.5	Lamp system operation	white series and	.√P
ANTER OF	The power source for operation of the test lamp shall be provided in accordance with:	and and and	Р
	 the appropriate IEC standard, or 	and the	Р
See Mar	 the manufacturer's recommendation 	The music where	J P.S™
5.2	Measurement procedure	a to the	j − P j
5.2.1	Irradiance measurements	where where we	Р
. 1	Minimum aperture diameter 7mm.	it it i	ø ₽*
4	Maximum aperture diameter 50 mm.	about about about	Р
te te	The measurement shall be made in that position of the beam giving the maximum reading.	aret and white	P
15 6	The measurement instrument is adequate calibrated.	a de do	P
5.2.2	Radiance measurements	the work which we	Р
5.2.2.1	Standard method	A st	A Pot
55	The measurements made with an ontical system	S 5 3	Р

s su	IEC/EN 62471		
Clause	Requirement + Test	Result – Remark	Verdict
and the a	The instrument shall be calibrated to read in absolute radiant power per unit receiving area and per unit solid angle to acceptance averaged over the field of view of the instrument.	and and and	Р
5.2.2.2	Alternative method	1 1 1	_⊘P
	Alternatively to an imaging radiance set-up, an irradiance measurement set-up with a circular field stop placed at the source can be used to perform radiance measurements.	an sain sain A sain sain	Р
5.2.3	Measurement of source size	the second	Р
ganiste. Tek	The determination of α , the angle subtended by a source, requires the determination of the 50% emission points of the source.	AND AND AND	Р
5.2.4	Pulse width measurement for pulsed sources	when they are	N
LINK WAL	The determination of Δt , the nominal pulse duration of a source, requires the determination of the time during which the emission is > 50% of its peak value.	and another and	N S
5.3	Analysis methods	+ .5 ⁰ .5 ⁰ .3	́Р
5.3.1	Weighting curve interpolations	20 20 2	Р
and a	To standardize interpolated values, use linear interpolation on the log of given values to obtain intermediate points at the wavelength intervals desired.	see table 4.1	SIN P
5.3.2	Calculations	Cares and	S PS
Set Prove of	The calculation of source hazard values shall be performed by weighting the spectral scan by the appropriate function and calculating the total weighted energy.	and surrey	P
5.3.3	Measurement uncertainty	and the second and	Р
	The quality of all measurement results must be quantified by an analysis of the uncertainty.		P
6	LAMP CLASSIFICATION	men and an	Р
See shi	For the purposes of this standard it was decided that the values shall be reported as follows:	see table 6.1	Р
et where	 for lamps intended for general lighting service, the hazard values shall be reported as either irradiance or radiance values at a distance which produces an illuminance of 500 lux, but not at a distance less than 200 mm 	aniret aniret an	N
and set we	 for all other light sources, including pulsed lamp sources, the hazard values shall be reported at a distance of 200 mm 	and source source	and P of
6.1	Continuous wave lamps	t 5 5	P.S
6.1.1	Exempt Group	The an is	Р
where we are	In the exempt group is lamp, which does not pose any photobiological hazard. The requirement is met by any lamp that does not pose:	white white w	P

an an	IEC/EN 62471				
Clause	Requirement + Test	Result – Remark	Verdict		
	 an actinic ultraviolet hazard (E_s) within 8-hours exposure (30000 s), nor 	- 10 S	Р		
	 a near-UV hazard (E_{UVA}) within 1000 s, (about 16 min), nor 	and all all	Р		
	 a retinal blue-light hazard (L_B) within 10000 s (about 2,8 h), nor 	in an ar	P		
and a	- a retinal thermal hazard (L _R) within 10 s, nor	an unite winth w	Р		
MUTER	– an infrared radiation hazard for the eye (E_{IR}) within 1000 s	where while and	Р		
uniset at	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 1000 s are in Risk Exempt Group	NUT AND AND	P. P.		
6.1.2	Risk Group 1 (Low-Risk)	1 10 10			
	In this group is lamp, which exceeds the limits for the exempt group but that does not pose:	when when	N		
mar	– an actinic ultraviolet hazard (E _s) within 10000 s, nor	war war w	< N		
	– a near ultraviolet hazard (E _{UVA}) within 300 s, nor	1 1 1	N		
m a	- a retinal blue-light hazard (L _B) within 100 s, nor	which which where	N		
Set .	– a retinal thermal hazard (L_R) within 10 s, nor	1 5 5	N		
w. 20	– an infrared radiation hazard for the eye (E_{IR}) within 100 s	and all	N		
	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 100 s are in Risk Group 1.	south water	N		
6.1.3	Risk Group 2 (Moderate-Risk)	The start water and	Ň		
and a	This requirement is met by any lamp that exceeds the limits for Risk Group 1, but that does not pose:	the state with	N		
5.04 . 15 2	– an actinic ultraviolet hazard (E_s) within 1000 s exposure, nor	at at at	N		
3	- a near ultraviolet hazard (E _{UVA}) within 100 s, nor	a she she	N		
et white	$-$ a retinal blue-light hazard (L_B) within 0,25 s (aversion response), nor	at white surface of	N		
- Anite	 a retinal thermal hazard (L_R) within 0,25 s (aversion response), nor 	minet unifer and	N		
do-	– an infrared radiation hazard for the eye (E_{IR}) within 10 s	1 4 1	N		
52 - 52 12 - 52	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 10 s are in Risk Group 2.	ent and and	N		
6.1.4	Risk Group 3 (High-Risk)	The she is	N		
Shure -	Lamps which exceed the limits for Risk Group 2 are in Group 3.	white white w	N		
6.2	Pulsed lamps	a de de	N		

IEC/EN 62471			
Clause	Requirement + Test	Result – Remark	Verdict
a la contra da contra	Pulse lamp criteria shall apply to a single pulse and to any group of pulses within 0,25 s.	10 50 55	N
the state	A pulsed lamp shall be evaluated at the highest nominal energy loading as specified by the manufacturer.	when when we are	N
er eve de do	The risk group determination of the lamp being tested shall be made as follows:	and show show	N
- and	 a lamp that exceeds the exposure limit shall be classified as belonging to Risk Group 3 (High-Risk) 	and and and a	N
smith .	 for single pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance does is below the EL shall be classified as belonging to the Exempt Group 	WENTER SALLE ARE	N
an an Sint south	 for repetitively pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance dose is below the EL, shall be evaluated using the continuous wave risk criteria discussed in clause 6.1, using time averaged values of the pulsed emission 	net and and	N

-	1	7
11		
	N	N

Г

F

wavelength ¹ λ , nm	OV nazard function $S_{uv}(λ)$	wavelengtn λ, nm	UV nazard function $S_{uv}(\lambda)$
200	0,030	313*	0,006
205	0,051	315	0,003
210	0,075	316	0,0024
215	0,095	317	0,0020
220	0,120	318	0,0016
225	0,150	319	0,0012
230	0,190	320	0,0010
235	0,240	322	0,00067
240	0,300	323	0,00054
245	0,360	325	0,00050
250	0,430	328	0,00044
254*	0,500	330	0,00041
255	0,520	333*	0,00037
260	0,650	335	0,00034
265	0,810	340	0,00028
270	1,000	345	0,00024
275	0,960	350	0,00020
280*	0,880	355	0,00016
285	0,770	360	0,00013
290	0,640	365*	0,00011
295	0,540	370	0,000093
297*	0,460	375	0,000077
300	0,300	380	0,000064
303*	0,120	385	0,000053
305	0,060	390	0,000044
308	0,026	395	0,000036
310	0,015	400	0,000030

¹ Wavelengths chosen are representative: other values should be obtained by logarithmic interpolation at intermediate wavelengths.

* Emission lines of a mercury discharge spectrum.

Table 4.2	Spectral weighting sources	functions for assessing retinal hazards fr	rom broadband optical	Ρ		
Wavelength nm		velength Blue-light hazard function Burn h nm B (λ)		n hazard function R (λ)		
100	300	0,01	1 1 E	5		
<u>305</u> 310		0,01	N 58 58 3	ş.,		
		0,01		16-		
5	315	0,01	15 5 5 8	S		
	320	0,01	6 30 30 W			
5 S.	325	0,01	1 A A A	۶.		
Sec.	330	0,01	Ser and the ser	de la		
	335	0,01	an an an			
19	340	0,01	1 1 1 I			
$a^{p} - s$	345	0,01	and and the	s_n		
	350	0,01		st.		
5 .	355	0,01	15 5 5	2		
	360	0,01	The the the state			
de 16	365	0,01		ð		
5	370	0,01	5° 5° 5° 5°	4		
	375	0,01	e de la co			
10	380	0,01	0,1	1		
. N	385	0.013	0,13	35		
1.1	390	0,025	0,25			
	395	0,05	0,5	5		
6 - S.	400	0,10	1,0	с. С		
de la	405	0.20	2.0	do.		
S 18	410	0.40	4.0			
	415	0.80	8.0			
5 I.	420	0.90	9.0	Ø		
1800	425	0.95	9.5	$-z_{h}$		
	430	0.98	9.8			
100	435	1.00	10.0			
d 1	440	1.00	10.0	14		
1	445	0.97	9.7	1		
S. 8	450	0.94	9.4	S.		
	455	0.90	9.0			
8 8	460	0.80	8.0	S.		
5	465	0,70	7.0	÷ 3		
	470	0.62	6.2			
100	475	0.55	5.5			
Sec.	480	0.45	4.5	199		
A	485	0.40	4.0	1		
. S	490	0.22	22			
a	495	0.16	1.6			
100	500-600	10 ^[(450-λ)/50]	1.0	d		
°п. °	600-700	0.001	1.0			
	700-1050	0,001	10[(700-λ)/500]			
6 8	1050-1150		0.2			
-24	1150-1200	1 10 10 10 ST 3	0.2 10 ^{0,02(1150-λ)}	100		
dia	1200-1400	and the second s	0.02			

E

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

WT-510-201-12-A

Table 5.4	Summary of the ELs for the	e surface of the s	kin or cornea	(irradiance ba	sed values) P
Hazard Name	Relevant equation	Wavelength range nm	Exposure duration sec	Limiting aperture rad (deg)	EL in terms of constant irradiance W•m ⁻²
Actinic UV skin & eye	$E_{S} = \sum E_{\lambda} \bullet S(\lambda) \bullet \Delta \lambda$	200 - 400	< 30000	1,4 (80)	30/t
Eye UV-A	$E_{UVA} = \sum E_{\lambda} \bullet \Delta \lambda$	315 – 400	≤1000 >1000	1,4 (80)	10000/t 10
Blue-light small source	$E_{B} = \sum E_{\lambda} \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	≤100 >100	< 0,011	100/t 1,0
Eye IR	$E_{IR} = \sum E_{\lambda} \bullet \Delta \lambda$	780 –3000	≤1000 >1000	1,4 (80)	18000/t ^{0,75} 100
Skin thermal	$E_{H} = \sum E_{\lambda} \cdot \Delta \lambda$	380 - 3000	< 10	2π sr	20000/t ^{0,75}

Table 5.5	Sur	mmary of the ELs for th	e retina (radian	ce based valu	ies)	See Bo	
Hazard Name		Relevant equation	Wavelength range nm	Exposure duration sec	Field of view radians	EL in terms of constant radiance W•m ⁻² •sr ⁻¹)	
Blue light		$L_{B} = \sum L_{\lambda} \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	0,25 – 10 10-100 100-10000 ≥ 10000	0,011•√(t/10) 0,011 0,0011•√t 0,1	10 ⁶ /t 10 ⁶ /t 10 ⁶ /t 100	
Retinal thermal		$L_{R} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	380 – 1400	< 0,25 0,25 – 10	0,0017 0,011•√(t/10)	50000/(α•t ^{0,25}) 50000/(α•t ^{0,25})	
Retinal thermal (weak visi stimulus	l ual s)	$L_{IR} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	780 – 1400	> 10	0,011	6000/α	

Ň

	Action				Em	ission Mea	suremer	nt		
Risk	spectr	Symbol	Units	Exe	empt	Low	risk	Mod risk		
	um			Limit	Result	Limit	Result	Limit	Result	
Actinic UV	$S_{UV}(\lambda)$	Es	W•m⁻²	0,001	4.99e-11	0,003		0,03	3 m ² 3	
Near UV		E _{UVA}	W•m ⁻²	0.33	1.56e-06	33		100	5° 55	
Blue light	Β(λ)	L _B	W∙m ⁻ ² •sr ⁻¹	100	7.81e-01	10000	38 18	400000) <	
Blue light, small source	Β(λ)	E _B	W•m ⁻²	0.01	57 - 370 5	1,0	177 - 38 597	400	t an <u>t</u>	
Retinal thermal	R(λ)	L _R	W•m ⁻ ² •sr ⁻¹	28000/α	5.24e+01	28000/α	 	71000/0	e ²⁰ ²⁰	
Retinal thermal, weak	R(λ)	LiR	W•m ⁻	545000 0.0017 ≤α≤ 0.011	NIE MI	 1.55e-02				
stimulus	Set which	an a	*51	6000/α 0.011 ≤α≤ 0.1	n ann an a					
IR radiation , eye	Ŵ	E _{IR}	W•m ⁻²	100	3.21e-04 570 3200				0 0 0	
* Small sou ** Involves e	urce defined	d as one with of non-GLS s	a α<0.011 r ource.	adian. Avera	ging field of vie	ew at 10000 s	is 0.1 rad	ian.	S. Murr	
1.0						LB RF0 (mrac	OV Mea I) (W/r	nsured m2/sr) (V	Limit //m2/sr)	
0.8-						Risk Gro	oup) 7.8 sk 4.60	1e-01 1.	00e+02	
e 0.6-						Group 1.7(Ris	1) 4.00 sk 8.26	Se+00 4.	00e+06	
Spect						LR RF0	2) OV Mea	sured	Limit	
0.2						(mrac 11(Exer Risk Gro	npt 5.24 (VV/I	m2/sr) (v le+01 3.	//m2/sr) 66e+05	
0.2-			- 4 57 10		f	11(Ris Group	sk 5.24	le+01 3.	66e+05	
0.0		563 Wav	اللہ ہے۔ 925 velength (nm	1288 1)		1.7(Ris Group	sk 2) 9.23	Be+01 9	.28e+5	

		eu), j Einis			Fm	ission Mea	suremen	s, u- 0.07 t	USIAU	25
Dick	Action	Symbol	Unite	Exe	empt	Low	risk	Mo	d risk	
RISK	um	Symbol	Units	Limit	Result	Limit	Result	Limit	Resu	ult
Actinic UV	S _{UV} (λ)	Es	W•m ⁻²	0,001	7.14e-05	0,003	100	0,03	1	
Near UV		E _{UVA}	W•m ⁻²	0.33	3.40e-05	33	34 <u>1-</u> -	100	S <u>-3</u>	
Blue light	Β(λ)	L _B	W•m ⁻ ² •sr ⁻¹	100	4.07e-04	10000	NG <u>at</u> M	400000	0	Ś
Blue light, small source	Β(λ)	E _Β	W•m ⁻²	0.01	14	1,0	500 <u></u> 100 	400	4 80 504	
Retinal thermal	R(λ)	L _R	W•m ⁻ ² •sr ⁻¹	28000/α	4.01e-01	28000/α	<u> 1</u>	71000/0	x	1
Retinal thermal, weak	R(λ)	L _{IR}	W•m ⁻	545000 0.0017 ≤α≤ 0.011	and and and and	ANNUL AN	anner - s Ster ann	and and State and	r ya Getanu	d)
stimulus	Ster yours	-writer - State		6000/α 0.011 ≤α≤ 0.1	2.23e-04					
IR radiation , eye		E _{IR}	W•m ⁻²	100	5.02e-03 570 3200				50 51	
* Small so ** Involves	urce define evaluation o	d as one with of non-GLS s	a<0.011 r ource.	adian. Avera	ging field of vie	ew at 10000 s	is 0.1 radi	an.	* .4	d.
1.0		1				LB RFC (mrad	DV Meas) (W/m	sured n2/sr) (V	Limit //m2/sr)	
0.8-						Risk Gro 11(Ris	4.07 (k) (k) (2.84)	'e-04 1. .e-03 1	00e+02 .00e+4	3
- 9.6 tr					ĩ	1.7(Ris Group	sk 2) 6.06	ie-03 4.	00e+06	1
o ds 0.4 -						LR RFC (mrad	OV Meas) (W/m	sured n2/sr) (V	Limit //m2/sr)	
0.2-	1					11(Exer Risk Gro	npt (up) 4.01	e-01 3.	67e+05	
						11(Ris Group	k 1) 4.01	e-01 3.	67e+05	
0.0+200		563 Way	925 velength (nm	1288	1650	1.7(Ris Group	sk 8.55	e-01 9	.31e+5	

	Action	on Er				ission Measurement					
Risk	spectr	Symbol	Units	Exe	empt	Low	risk	Mo	od risk		
	um			Limit	Result	Limit	Result	Limit	Resul		
Actinic UV	$S_{UV}(\lambda)$	Es	W•m ⁻²	0,001	1.39e-04	0,003		0,03			
Near UV	2	E _{UVA}	W•m ⁻²	0.33	5.95e-05	33	- <u></u>	100	1 <u>- 2</u> 1		
Blue light	Β(λ)	L _B	W•m ⁻ ² •sr ⁻¹	100	7.17e-01	10000	NJ <u>at</u>	400000	0		
Blue light, small source	Β(λ)	Ε _Β	W•m ⁻²	0.01	54	1,0	500	400	a anna		
Retinal thermal	R(λ)	L _R	W•m ⁻ ² •sr ⁻¹	28000/α	4.28e+01	28000/α		71000/	α		
Retinal thermal, weak	R(λ)	Lin	W•m ⁻	545000 0.0017 ≤α≤ 0.011	anter yan ter anter	White H	and and	AND AN	See sur		
stimulus	Sec. Sher	Surver Surver	•sr	6000/α 0.011 ≤α≤ 0.1	3.33e-01						
IR radiation , eye	1	E _{IR}	W•m⁻²	100	5.02e-03	570	Sec.	3200	90 - 49 54		
* Small so ** Involves	urce define evaluation o	d as one with of non-GLS s	n α<0.011 r ource.	adian. Avera	ging field of vie	ew at 10000 s	is 0.1 radi	an.	8 D		
1.0						LB RF0 (mrad 100(Exe	DV Meas I) (W/n mpt 7,17	sured n2/sr) (\ /o.01 1	Limit V/m2/sr)		
0.8-						Risk Gro 11(Ris	sk 4.20	e+00 1	.00e+02		
m 0.6-						1.7(Ris Group	sk 2) 8.06	e+00 4	.00e+06		
o .4 -						LR RF0 (mrad	OV Mea: I) (W/n	sured n2/sr) (\	Limit V/m2/sr)		
0.2-						11(Exer Risk Gro	npt oup) 4.28	e+01 2	.81e+05		
			hard days and	14		11(Ris Group	sk 4.28	e+01 2	.81e+05		
0.04)	563 Way	925 Velength (nm	1288	1650	1.7(Ris Group	sk 8.22	e+01 7	7.14e+5		

Attachment 1: Equipment List

Equipment	Model/Type	Internal ID	Cal. Due. Date
UV-VIS-near IR Spectrophotocolorimeter	EVERFINE PMS-2000	WTFN1017A1-004	2025-01-10
High Accuracy Array Spectroradiometer	EVERFINE HAAS-2000 IR1	WTFN1017A1-005	2025-01-10
Standard luminance source	EVERFINE SLS-150	WTFN1017A1-006	2025-01-06
Standard lamp of ultraviolet radiation	EVERFINE SIS-631	WTFN1018A1-002	2025-01-06
Spectral irradiance standard lamp	EVERFINE D204BH	WTFN1019A1-002	2025-01-06
Digital Power Meter	EVERFINE PF310A	WTFN1004A1-005	2025-01-10
AC Power Source	EVERFINE DPS1010	WTFN1005A1-006	2025-01-10
Digital CC&CV DC Power Supply	EVERFINE WY3010	WTFN1006A1-004	2025-01-10
High Stability UV Standard Power Supply	EVERFINE UVS-8005	WTFN1007A1-002	2025-01-10
BAND RADIOMETER	EVERFINE RD-2000F	WTFN1017A1-003	2025-01-08
Spectral Photometer Detector	EVERFINE SPD-2	WTFN1017A1-007	2025-01-10
Temperature & Humidity Datalogger	Testo 608-H1	WTFN1017A1-003	2025-01-04

>

177/

Attachment 2: Photo document

Photo 2

Waltek Testing Group (Foshan) Co., Ltd. http://www.waltek.com.cn

WT-510-201-12-A

Photo 3

Photo 4

===== End of Report ======