

TEST REPORT

Reference No..... : WTF23F12257067N

Applicant.....: Mid Ocean Brands B.V.

Address.....: 7/F., Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon,

Hong Kong

Manufacturer: 115164

Address..... : /

Product Name.....: LED Wireless speaker

Model No.....: MO6662

Test specification.....: Photobiological safety of lamps and lamp systems

EN 62471:2008

IEC 62471:2006 (First Edition)

Date of Receipt sample.... : 2023-12-01

Date of Test..... : 2023-12-01 to 2023-12-19

Date of Issue..... : 2023-12-19

Test Report Form No......: WPL-62471A-01A

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of approver.

Prepared By:

Waltek Testing Group (Foshan) Co., Ltd.

Address: No.13-19, 2/F., 2nd Building, Sunlink International Machinery City, Chencun, Shunde District, Foshan, Guangdong, China

Tel:+86-757-23811398 Fax:+86-757-23811381 E-mail:info@waltek.com.cn

Approved by:

Johnny Zhao

Tested by:

Finn Y

Reference No.: WTF23F12257067N Page 2 of 15

	A			1
V		X	A	

rest item desc	ription	LED Wireless speaker		
Trade Mark	ii.	None		
General remark	s:	ik itek anitek anitek.	STATE STATES	The The The
(See remark #) (See appended	" refers to a remark app table)" refers to a table	I information appended to the pended to the report. appended to the report. sis used as the decimal separation.	The Mary M	
No decision rule imit according to	is specified by the stan the specification in tha	decisions on conformity (decinorate) dard, when comparing the mat standard. The decisions on acceptance" decision rule, pre	easurement resu conformity are m	nade without applyin
25°C±5°C.		oltage 5VDC with USB and a red in this report as below:	t a stable ambiei	nt temperature
Item	Model	Ratings	ССТ	Driver
5 5 5	MO6662	5VDC	J J.	, (fr , (fr
All tests were ca	conducted under lumina erried out at model MO6	6662.	NITER WALFER	NUTER WHITE WHIS
The tests were of All tests were can $\alpha = 0.1000$ radia	conducted under lumina rried out at model MO6 in, distance between la	6662. mp and sensor: 200.0 mm.		ALTER WHITER WHITE
The tests were of All tests were can a = 0.1000 radia	conducted under lumina rried out at model MO6 in, distance between la culars	mp and sensor: 200.0 mm. See below	s wave lamps	□ nulsed lamps
The tests were of All tests were can be at a = 0.1000 radia Test item partic Tested lamp	conducted under lumina irried out at model MO6 in, distance between la	mp and sensor: 200.0 mm. See below ightharpoonup continuous		□ pulsed lamps
The tests were of All tests were can be at a = 0.1000 radia Test item partic Tested lamp Tested lamp sys	conducted under lumina irried out at model MO6 in, distance between la culars	mp and sensor: 200.0 mm. See below in continuous No lamp systems	em	MUEZ ALLE A
The tests were of All tests were can be a can be	conducted under lumina irried out at model MO6 in, distance between la culars	mp and sensor: 200.0 mm. See below Continuous No lamp syste exempt⊠	em	MUEZ ALLE A
The tests were can all tests are	conducted under lumina irried out at model MO6 in, distance between land culars	mp and sensor: 200.0 mm. See below Continuous No lamp syste exempt⊠	em	MUEZ ALLE A
The tests were can be a second as a second a sec	conducted under lumina irried out at model MO6 in, distance between land culars	mp and sensor: 200.0 mm. See below Continuous No lamp syste exempt⊠	em risk 1⊡ r	□ pulsed lamps isk 2□ risk 3□
The tests were of All tests were can a = 0.1000 radia Test item particular fested lamp Tested lamp system can classificate amp cap Bulb	conducted under lumina irried out at model MO6 in, distance between land culars	See model lis	em risk 1⊡ r	MUEZ ALLE A
The tests were of All tests were can a = 0.1000 radial rest item particles of the lamp system can be capped and capped an	conducted under lumina irried out at model MO6 in, distance between la culars	See model list See model list	em risk 1⊡ r	MUEZ ALLE A
The tests were of all tests were can be a second as a second a second as a sec	conducted under lumina irried out at model MO6 in, distance between lar culars	See model list See model list	em risk 1⊡ r	MUEZ ALLE A
The tests were of all tests were can be also as a control of the lamp system. The steed lamp system can be also as a control of the lamp can be also as a control of the lamp can be also as a control of the lamp can be also as a control of lamp can be a control of lamp c	conducted under lumina arried out at model MO6 in, distance between lanculars	See below See below See below No lamp system	em risk 1⊡ r	MUEZ ALLE A
The tests were of All tests were can a = 0.1000 radia Test item particular fested lamp Tested lamp system can classificate amp cap Rated of the lame furthermore management of large systems of lar	conducted under lumina arried out at model MO6 in, distance between lanculars	See below See model list See model list See page 13 See page 14 See page 14 See page 15 See page 15	em risk 1⊡ r	MUEZ ALLE A
The tests were of All tests were can a = 0.1000 radial rest item particular rested lamp Tested lamp systamp classificate amp cap	conducted under lumina rried out at model MO6 in, distance between la culars	See below See model list See model list See page 13 See page 14 See page 14 See page 15 See page 15	em risk 1⊡ r	MUEZ ALLE A
The tests were can a second and a second a secon	conducted under lumina arried out at model MO6 in, distance between lar culars	See below See model list See model list See page 13 See page 14 See page 14 See page 15 See page 15	em risk 1□ r st in page 2	MUEZ ALLE A
The tests were of All tests were can a = 0.1000 radia Test item particles of the lamp cap	conducted under lumina irried out at model MO6 in, distance between land it is in a second in group. The properties of the lamp in the lamp is according IEC stand in the instrument. The measurement instrument in a second in group is in a second in group in group in a second in group in a second in group in a second in group in gr	See below	em risk 1□ r st in page 2	MUEZ ALLE A

N/A

	IEC/EN 62471		
Clause	Requirement + Test	Result – Remark	Verdict
4	EXPOSURE LIMITS	They show sho	Р
4.1	General	State State William	Р
NUTER WAY	The exposure limits in this standard is not less than 0,01 ms and not more than any 8-hour period and should be used as guides in the control of exposure	TEX MILIER WALTER	P
iek waite wate	Detailed spectral data of a light source are generally required only if the luminance of the source exceeds 10 ⁴ cd·m ⁻²	see clause 4.3	Р
4.3	Hazard exposure limits	- LUE CLIEF WAL	Р
4.3.1	Actinic UV hazard exposure limit for the skin and eye	20 10	Р
Maria All	The exposure limit for effective radiant exposure is 30 J·m ⁻² within any 8-hour period	ALTER WALTER WALTER	P.W
ite whi	To protect against injury of the eye or skin from ultraviolet radiation exposure produced by a broadband source, the effective integrated spectral irradiance, Es, of the light source shall not exceed the levels defined by:	THE WALTER WALTER	Pari
WALTER V	$E_{s} \cdot t = \sum_{200}^{400} \sum_{t} E_{\lambda}(\lambda, t) \cdot S_{UV}(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 30 \qquad \text{J} \cdot \text{m}^{-2}$	MALIER MILIER MALIF	P
include and	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye or skin shall be computed by:	andret white	WILL B
TER SINITE	$t_{\text{max}} = \frac{30}{E_{\text{S}}}$ s	White White W	Р
4.3.2	Near-UV hazard exposure limit for eye	+ 17E+ 15E+ 15	Р
unctek si	For the spectral region 315 nm to 400 nm (UV-A) the total radiant exposure to the eye shall not exceed 10000 J·m ⁻² for exposure times less than 1000 s. For exposure times greater than 1000 s (approximately 16 minutes) the UV-A irradiance for the unprotected eye, E _{UVA} , shall not exceed 10 W·m ⁻² .	milet while while	P. P.
E* WITE	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye for time less than 1000 s, shall be computed by:	# NUTER AND THE	P
NALIE .	$t_{\text{max}} \le \frac{10\ 000}{E_{\text{UVA}}} \qquad \text{s}$	street statest water	Pit
4.3.3	Retinal blue light hazard exposure limit	See table 4.2	Р
ini w	To protect against retinal photochemical injury from chronic blue-light exposure, the integrated spectral radiance of the light source weighted against the blue-light hazard function, B(λ), i.e., the blue-light weighted radiance , L _B , shall not exceed the levels defined by:	life while while	P
Marile .	$L_{\rm B} \cdot t = \sum_{300}^{700} \sum_{t} L_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 10^{6} \qquad \text{J} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$	for $t \le t_{\text{max}} = \frac{10^6}{L_{\text{B}}}$	P

	IEC/EN 62471		
Clause	Requirement + Test	Result – Remark	Verdict
THE STATES	$L_{\rm B} = \sum_{300}^{700} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 100 \qquad \qquad W \cdot m^{-2} \cdot sr^{-1}$	The state and	P.
4.3.4	Retinal blue light hazard exposure limit - small source	Mr. Mr. M.	N
	Thus the spectral irradiance at the eye E_{λ} , weighted against the blue-light hazard function $B(\lambda)$ shall not exceed the levels defined by:	The Write Mile	N
Silver Silver	$E_{B} \cdot t = \sum_{300}^{700} \sum_{t} E_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 100 J \cdot m^{-2}$	AUT. My. A	N
W	$E_{\rm B} = \sum_{300}^{700} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 1 \qquad W \cdot m^{-2}$	White whi wh	- N
4.3.5	Retinal thermal hazard exposure limit	William Maria	Р 🖑
LTEK WALTER	To protect against retinal thermal injury, the integrated spectral radiance of the light source, L_{λ} , weighted by the burn hazard weighting function $R(_{\lambda})$ (from Figure 4.2 and Table 4.2), i.e., the burn hazard weighted radiance, shall not exceed the levels defined by:	THE WRITER WALTER	A PARTER
WALTER V	$L_{\rm R} = \sum_{380}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{50000}{\alpha \cdot t^{0.25}}$ W · m ⁻² · sr ⁻¹	(10 µs ≤ t ≤ 10 s)	A P.
4.3.6	Retinal thermal hazard exposure limit – weak visual stimulus	2 15th 55th	J [©] P ∈
iek mirik Mirik	For an infrared heat lamp or any near-infrared source where a weak visual stimulus is inadequate to activate the aversion response, the near infrared (780 nm to 1400 nm) radiance, L _{IR} , as viewed by the eye for exposure times greater than 10 s shall be limited to:	Must Award a	P P
AUG.	$L_{IR} = \sum_{780}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{6000}{\alpha} \qquad \qquad W \cdot m^{-2} \cdot sr^{-1}$	White the til	Р
4.3.7	Infrared radiation hazard exposure limits for the eye	our an an	Р
ere and	The avoid thermal injury of the cornea and possible delayed effects upon the lens of the eye (cataractogenesis), ocular exposure to infrared radiation, E _{IR} , over the wavelength range 780 nm to 3000 nm, for times less than 1000 s, shall not exceed:	TER MULTER MULTER	P P
SALTER.	$E_{\text{IR}} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 18000 \cdot t^{-0.75}$ W · m ⁻²	antifek water unt	P
neith an	For times greater than 1000 s the limit becomes:	LITER OLITER MALTER	P
TER WALL	$E_{IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 100 \qquad W \cdot m^{-2}$	LEX MULTER MULTER	IN TELL P
4.3.8	Thermal hazard exposure limit for the skin	t st st	S P
**************************************	Visible and infrared radiant exposure (380 nm to 3000 nm) of the skin shall be limited to:	Aur Aur, an	Р

	IEC/EN 62471		
Clause	Requirement + Test	Result – Remark	Verdict
STEET ST	$E_{H} \cdot t = \sum_{380}^{3000} \sum_{t} E_{\lambda}(\lambda, t) \cdot \Delta t \cdot \Delta \lambda \le 20000 \cdot t^{0,25} \qquad J \cdot m^{-2}$	THE SHE SS	P
5	MEASUREMENT OF LAMPS AND LAMP SYSTEMS	Vie in in	Р
5.1	Measurement conditions	LIER REFERENCE	Р
EF SHALLE	Measurement conditions shall be reported as part of the evaluation against the exposure limits and the assignment of risk classification.	ANTER WILLIEM	na EX P
5.1.1	Lamp ageing (seasoning)	John John (N
or of	Seasoning of lamps shall be done as stated in the appropriate IEC lamp standard.	Mary Mary Mary	N
5.1.2	Test environment	WILL MULL MULL	Р
LITER WALL	For specific test conditions, see the appropriate IEC lamp standard or in absence of such standards, the appropriate national standards or manufacturer's recommendations.	THE WALTER WALTER	all TEX P
5.1.3	Extraneous radiation	t the the	Р
WALTER V	Careful checks should be made to ensure that extraneous sources of radiation and reflections do not add significantly to the measurement results.	MATER MATER MATE	P. P.
5.1.4	Lamp operation	10 st 10	P
Le The	Operation of the test lamp shall be provided in accordance with:	Aur. Mur.	Р
in aller	the appropriate IEC lamp standard, or	The south of	N
t sof	the manufacturer's recommendation	4 25	P.
5.1.5	Lamp system operation	antite and whi	Р
MALTER SH	The power source for operation of the test lamp shall be provided in accordance with:	alfelt mitelt smith	Y P
	the appropriate IEC standard, or	A 24-	Р
ice. The	the manufacturer's recommendation	TER INTE WALLE	P
5.2	Measurement procedure		et P
5.2.1	Irradiance measurements	anis anis di	Р
100	Minimum aperture diameter 7mm.	A At a	P
ale a	Maximum aperture diameter 50 mm.	White with whi	Р
n ^{liek} on	The measurement shall be made in that position of the beam giving the maximum reading.	SEER MATER SUITER	Р
e de	The measurement instrument is adequate calibrated.		P
5.2.2	Radiance measurements	Complete Mary	Р
5.2.2.1	Standard method	at alt	P
AL.	The measurements made with an optical system.	They are the	Р

	IEC/EN 62471		
Clause	Requirement + Test	Result – Remark	Verdic
onliet w	The instrument shall be calibrated to read in absolute radiant power per unit receiving area and per unit solid angle to acceptance averaged over the field of view of the instrument.	AND WILLS WITH	P
5.2.2.2	Alternative method		ZP
EF MILE	Alternatively to an imaging radiance set-up, an irradiance measurement set-up with a circular field stop placed at the source can be used to perform radiance measurements.	it lift still	Р
5.2.3	Measurement of source size	14. 14. 1	Р
MULTE.	The determination of α , the angle subtended by a source, requires the determination of the 50% emission points of the source.	White white whi	Р
5.2.4	Pulse width measurement for pulsed sources	Cristian Colored	N
LIEK WAL	The determination of Δt , the nominal pulse duration of a source, requires the determination of the time during which the emission is > 50% of its peak value.	Tex White Whiter	N
5.3	Analysis methods	the street of	Р
5.3.1	Weighting curve interpolations	30, 30, 2	P
White A	To standardize interpolated values, use linear interpolation on the log of given values to obtain intermediate points at the wavelength intervals desired.	see table 4.1	MA P
5.3.2	Calculations	Source College	Р
TEK VIDLTE	The calculation of source hazard values shall be performed by weighting the spectral scan by the appropriate function and calculating the total weighted energy.	MILLER MALTER	P
5.3.3	Measurement uncertainty	LIE CLIEB AND	Р
NETER A	The quality of all measurement results must be quantified by an analysis of the uncertainty.	The state state	P
6	LAMP CLASSIFICATION	me me m	Р
cielle anci	For the purposes of this standard it was decided that the values shall be reported as follows:	see table 6.1	P
et walter	for lamps intended for general lighting service, the hazard values shall be reported as either irradiance or radiance values at a distance which produces an illuminance of 500 lux, but not at a distance less than 200 mm	ANTER ANTER AN	E N.S
uriek ar	for all other light sources, including pulsed lamp sources, the hazard values shall be reported at a distance of 200 mm	LIFER WALTER WALTER	P
6.1	Continuous wave lamps	THE CHE STEE	P
6.1.1	Exempt Group	" " " " " " " " " " " " " " " " " " "	Р
WILLE	In the exempt group is lamp, which does not pose any photobiological hazard. The requirement is met by any lamp that does not pose:	White white wh	Р

Reference No.: WTF23F12257067N Page 7 of 15

	IEC/EN 62471	in the star of	11. 24.
Clause	Requirement + Test	Result – Remark	Verdict
- Silver	 an actinic ultraviolet hazard (E_S) within 8-hours exposure (30000 s), nor 	A A A	Р
All A	 a near-UV hazard (E_{UVA}) within 1000 s, (about 16 min), nor 	an an an	Р
	 a retinal blue-light hazard (L_B) within 10000 s (about 2,8 h), nor 	it with the	Р
21VE	 a retinal thermal hazard (L_R) within 10 s, nor 	the state with the	Р
MATER	 an infrared radiation hazard for the eye (E_{IR}) within 1000 	atter outer and	Par
aretek ou	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L _{IR}), within 1000 s are in Risk Exempt Group	NITER MILIER MILIER	P. MILITER W
6.1.2	Risk Group 1 (Low-Risk)	at at the	N
	In this group is lamp, which exceeds the limits for the exempt group but that does not pose:	i will the .	N
21/2	 an actinic ultraviolet hazard (E_s) within 10000 s, nor 	anite while our	N
A. C.	 a near ultraviolet hazard (E_{UVA}) within 300 s, nor 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N
240, 2	 a retinal blue-light hazard (L_B) within 100 s, nor 	MULT WALL WALL	N
de d	a retinal thermal hazard (L _R) within 10 s, nor	STATE OF	N
12. Th.	 an infrared radiation hazard for the eye (E_{IR}) within 100 s 	Salur Caller	N
	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L _{IR}), within 100 s are in Risk Group 1.	MILLER WALTER O	N
6.1.3	Risk Group 2 (Moderate-Risk)	TITES OUTE SON	N
NETER A	This requirement is met by any lamp that exceeds the limits for Risk Group 1, but that does not pose:	TET TET STE	, N
SEE SE	 an actinic ultraviolet hazard (E_s) within 1000 s exposure, nor 	ar ar ar	N
-70	 a near ultraviolet hazard (E_{UVA}) within 100 s, nor 	in the same	N
ER MUTER	 a retinal blue-light hazard (L_B) within 0,25 s (aversion response), nor 	it while anifest of	N
SUPETER J	 a retinal thermal hazard (L_R) within 0,25 s (aversion response), nor 	nited antick soni	N. N.
- C.V-	 an infrared radiation hazard for the eye (E_{IR}) within 10 s 	- A- A	N
iles aile	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 10 s are in Risk Group 2.	et tet tet	N
6.1.4	Risk Group 3 (High-Risk)	" " " " " " " " " " " " " " " " " " "	N
MULTER	Lamps which exceed the limits for Risk Group 2 are in Group 3.	WHITE WHITE	N N
6.2	Pulsed lamps	A B B	N

	IEC/EN 62471					
Clause	Requirement + Test	Result – Remark	Verdict			
JEST .	Pulse lamp criteria shall apply to a single pulse and to any group of pulses within 0,25 s.		N			
70 Z	A pulsed lamp shall be evaluated at the highest nominal energy loading as specified by the manufacturer.	in in in	N			
	The risk group determination of the lamp being tested shall be made as follows:	Unit with the	N			
CHELL	a lamp that exceeds the exposure limit shall be classified as belonging to Risk Group 3 (High-Risk)	The write while of	N			
White.	 for single pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance does is below the EL shall be classified as belonging to the Exempt Group 	WALTER WALTER WAL	N L			
	 for repetitively pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance dose is below the EL, shall be evaluated using the continuous wave risk criteria discussed in clause 6.1, using time averaged values of the pulsed emission 	ANTE WILL WALFEL	N			
		1 3 3				

Wavelength₁ λ, nm	UV hazard function S _ω (λ)	Wavelength λ, nm	UV hazard function S₀√(λ)
200	0,030	313*	0,006
205	0,051	315	0,003
210	0,075	316	0,0024
215	0,095	317	0,0020
220	0,120	318	0,0016
225	0,150	319	0,0012
230	0,190	320	0,0010
235	0,240	322	0,00067
240	0,300	323	0,00054
245	0,360	325	0,00050
250	0,430	328	0,00044
254*	0,500	330	0,00041
255	0,520	333*	0,00037
260	0,650	335	0,00034
265	0,810	340	0,00028
270	1,000	345	0,00024
275	0,960	350	0,00020
280*	0,880	355	0,00016
285	0,770	360	0,00013
290	0,640	365*	0,00011
295	0,540	370	0,000093
297*	0,460	375	0,000077
300	0,300	380	0,000064
303*	0,120	385	0,000053
305	0,060	390	0,000044
308	0,026	395	0,000036
310	0,015	400	0,000030

Wavelengths chosen are representative: other values should be obtained by logarithmic interpolation at intermediate wavelengths.

^{*} Emission lines of a mercury discharge spectrum.

Way	elength/	Blue-light hazard function	Burn hazard function	
30 1131	nm	B (λ)	R (λ)	
56 JW	300	0,01	18 18 18 18 18 18 18 18 18 18 18 18 18 1	
- 70	305	0,01	The sale of the	
J J	310	0,01	- A	
	315	0,01	THE SECTION SECTION	
5.2	320	0,01	to the to the	
n de	325	0,01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
11 July	330	0,01	ser all the way of	
	335	0,01	201	
- 18 TO	340	0,01	e de de de	
1. 10.	345	0,01	The star of the star	
مال بالد	350	0,01		
	355	0,01		
-2.	360	0,01	the the the	
y 26°	365	0,01	a at at at	
302 3	370	0,01	the title that the	
	375	0,01	. 40 4	
56	380	0,01	0,1	
24. 24.	385	0,013	0,13	
.4	390	0,025	0,25	
The Wales	395	0,05	0,5	
	400	0,10	1,0	
J 3	405	0,20	2,0	
" The	410	0,40	4,0	
	415	0,80	8,0	
	420	0,90	9,0	
21/2 241	425	0,95	9,5	
A.	430	0,98	9,8	
J	435	1,00	10,0	
2 2	440	1,00	10,0	
1 11 11 11 11 11 11 11 11 11 11 11 11 1	445	0,97	9,7	
in the	450	0,94	9,4	
	455	0,90	9,0	
* 50°	460	0,80	8,0	
745 1	465	0,70	7,0	
حكادر	470	0,62	6,2	
	475	0,55	5,5	
20 20	480	0,45	4,5	
19th 18	485	0,40	4,0	
Note that the same	490	0,22	2,2	
	495	0,16	1,6	
	00-600	10 ^[(450-\lambda)/50]	1,0	
60	00-700	0,001	1,0	
70	0-1050	The state of the s	10 ^[(700-\lambda)/500]	
	50-1150	F 4	0,2	
	50-1200	A THE SECOND STATE OF SOME	0,2.10 ^{0,02(1150-λ)}	
	00-1400	the the the the the	0,02	

Table 5.4	Summary of the ELs for the	surface of the s	kin or cornea	(irradiance ba	sed values) P
Hazard Name	Relevant equation	Wavelength range nm	Exposure duration sec	Limiting aperture rad (deg)	EL in terms of constant irradiance W•m ⁻²
Actinic UV skin & eye	$E_{S} = \sum E_{\lambda} \bullet S(\lambda) \bullet \Delta \lambda$	200 – 400	< 30000	1,4 (80)	30/t
Eye UV-A	$E_{UVA} = \sum E_{\lambda} \bullet \Delta \lambda$	315 – 400	≤1000 >1000	1,4 (80)	10000/t 10
Blue-light small source	$E_B = \sum E_\lambda \bullet B(\lambda) \bullet \Delta\lambda$	300 – 700	≤100 >100	< 0,011	100/t 1,0
Eye IR	$E_IR = \sum E_\lambda \bullet \Delta \lambda$	780 –3000	≤1000 >1000	1,4 (80)	18000/t ^{0,75} 100
Skin therma	$E_H = \sum E_\lambda \bullet \Delta \lambda$	380 – 3000	< 10	2π sr	20000/t ^{0,75}

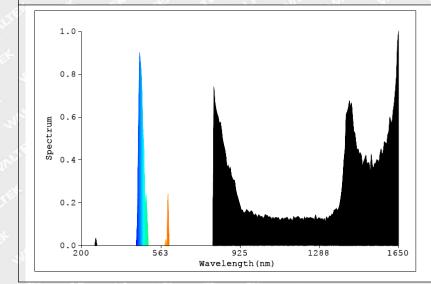

Table 5.5 S	ummary of the ELs for th	e retina (radian	ce based valu	ies)	P.A.
Hazard Name	e Relevant equation	Wavelength range nm	Exposure duration sec	Field of view radians	EL in terms of constant radiance W•m ⁻² •sr ⁻¹)
Blue light	$L_{B} = \sum L_{\lambda} \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	0,25 - 10 10-100 100-10000 ≥ 10000	0,011•√(t/10) 0,011 0,0011•√t 0,1	10 ⁶ /t 10 ⁶ /t 10 ⁶ /t 100
Retinal thermal	$L_{R} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	380 – 1400	< 0,25 0,25 – 10	0,0017 0,011•√(t/10)	50000/(α•t ^{0,25}) 50000/(α•t ^{0,25})
Retinal thermal (weak visual stimulus)	$L_{IR} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	780 – 1400	> 10	0,011	6000/α

Table 6.1 (MO6662;) Emission limits for risk groups of continuous wave lamps, α = 0.1000rad

Risk	Action spectr um	Symbol	Units	Emission Measurement					
				Exempt		Low risk		Mod risk	
				Limit	Result	Limit	Result	Limit	Result
Actinic UV	S _{υν} (λ)	Es	W•m⁻²	0,001	2.46e-05	0,003	31 CE	0,03	Vr. 77
Near UV	1,-2	Euva	W•m⁻²	0.33	0	33		100	760 NI
Blue light	Β(λ)	L _B	W•m⁻ ²•sr⁻¹	100	1.63e-01	10000	761g	4000000	£ E
Blue light, small source	Β(λ)	Ев	W•m⁻²	0.01	ek ek uncirek	1,0	SER SER	400	an Afrik
Retinal thermal	R(λ)	L _R	W•m⁻ ²•sr⁻¹	28000/α	7.88e+00	28000/α	e street	71000/α	sur
Retinal thermal, weak visual	R(λ)	L _{IR}	W•m⁻ ²•sr⁻¹	545000 0.0017 ≤α≤ 0.011	1.64e+00				
stimulus **	TEK MILT	MUTTER.	-•81	6000/α 0.011 ≤α≤ 0.1					
IR radiation , eye	100	E _{IR}	W•m⁻²	100	1.60e+00	570	on Mark	3200	764

Small source defined as one with α <0.011 radian. Averaging field of view at 10000 s is 0.1 radian. Involves evaluation of non-GLS source.

LB RFOV	Measured	Limit		
(mrad)	(W/m2/sr)	(W/m2/sr)		
100(Exempt	1.63e-01	1.00e+02		
Risk Group)	1.000-01			
11(Risk	6.18e-01	1.00e+4		
Group 1)	0.106-01	1.000+4		
1.7(Risk	7.96e-01	4.00e+06		
Group 2)	7.506-01			
LR RFOV	Measured	Limit		
(mrad)	(W/m2/sr)	(W/m2/sr)		
11(Exempt	7.88e+00	2.80e+05		
Risk Group)	7.000+00			
11(Risk	7.88e+00	2.80e+05		
Group 1)	7.000+00			
1.7(Risk	1.02e+01	7.10e+5		
Group 2)	1.026701	7.106+3		

Attachment 1: Equipment List

Equipment	Model/Type	Cal. Due. Date 2024-07-04	
UV-VIS-near IR Spectrophotocolorimeter	EVERFINE PMS-2000		
High Accuracy Array Spectroradiometer	EVERFINE HAAS-2000 IR1	2024-07-04	
Standard luminance source	EVERFINE SLS-150	2024-07-05	
Standard lamp of ultraviolet radiation	EVERFINE SIS-631	2024-07-05	
Spectral irradiance standard lamp	EVERFINE D204BH	2024-07-05	
Digital Power Meter	EVERFINE PF310A	2024-06-25	
AC Power Source	EVERFINE DPS1010	2024-06-27	
Digital CC&CV DC Power Supply	EVERFINE WY3010	2024-07-04	
High Stability UV Standard Power Supply	EVERFINE UVS-8005	2024-07-04	
BAND RADIOMETER	EVERFINE RD-2000F	2024-07-05	
Spectral Photometer Detector	EVERFINE SPD-2	2024-07-09	
Temperature & Humidity Datalogger	Testo 608-H1	2024-01-10	

Attachment 2: Photo document

Model: MO6662

Photo 1

Photo 2

Photo 3

===== End of Report =====