

Test Report

Report No.: AGC05443240413SS01

PRODUCT DESIGNATION	:	Recycled ABS LED alarm clock
BRAND NAME	:	N/A
MODEL NAME	:	M02299
CLIENT	:	MID OCEAN BRANDS B.V
DATE OF ISSUE	:	Apr. 17, 2024
STANDARD(S)	:	EN 62471:2008
REPORT VERSION	:	V1.0

TEST REPORT					
EN 62471					
Photobiological sa	ifety of lamps and	l lamp systems			
Report reference No AGC05443240413SS01					
Tested by (+ signature):	Mody Mo	mody mo			
Reviewed by (+ signature):	Jimmy Zhu	Jimmy zhu Mette He			
Approved by (+ signature):	Matte He (Authorized officer)	mette He			
Date of issue	Apr. 17, 2024				
Contents	Total 18 pages				
Testing laboratory					
Name: Address	Attestation of Global Compliance (Shenzhen) Co., Ltd. 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao 'an District, Shenzhen, Guangdong, China				
Test location	Same as above				
Applicant					
Name	MID OCEAN BRANDS	B.V			
Address	7/F, Kings Tower, 111 King Lam Street, Cheung Sha Wan, Kowloon, Hong Kong				
Manufacturer					
Name	MID OCEAN BRANDS	B.V			
Address	7/F, Kings Tower, 111 Kowloon, Hong Kong	King Lam Street, Cheung Sha Wan,			
Factory					
Name	MID OCEAN BRANDS	B.V			
Address	7/F, Kings Tower, 111 Kowloon, Hong Kong	King Lam Street, Cheung Sha Wan,			
Test specification					
Standard	EN 62471:2008				
Test procedure	Type test				
Non-standard test method	N/A				
Test Report Form/blank test report					
Test Report Form No	AGC62471A1				
TRF originator	AGC				
Master TTRF	Dated 2009-06				

Test item					
Product designation	:	Recycled ABS LED alarm clock			
Brand name	:	N/A			
Test model	:	MO2299	MO2299		
Series models	:	N/A			
Rating(s)	:	3*1.5V AA batter	y		
Test item Particulars					
Tested lamp	:	oxtimes continuous wa	ve lamps 🛛 🗌 puls	sed lamp	
Lamp classification gro	up:	🛛 exempt 🛛 🗆 ı	risk 1 🗌 risk 2 🗌 ris	sk 3	
Lamp cap	:	N/A			
Bulb	:	N/A			
Used measurement ins	strument:	SPECTRORADIO	OMETER		
Temperature by measu	urement:	25.1°C			
Information for safety u	ise:	N/A			
Test case verdicts					
Test case does not app	oly to the test object :	N(/A)			
Test item does meet th	e requirement:	P(ass)			
Test item does not mee	et the requirement:	F(ail)			
Testing					
Date of receipt of test i	tem:	Apr. 11, 2024			
Date(s) of performance	e of test:	Apr. 12, 2024			
Attachments					
Attachment A	:	Photos of produc	t		
"(see Annex #)" refers	ted in this report relate to a remark appended to an annex appended a comma is used as the	only to the item tes to the report. to the report.	ted.	ng laborato	ry.
		Issued Date	Valid Varaian		latao
Report Version V1.0	Revise Time		Valid Version		Notes
V1.0	1	Apr. 17, 2024	Valid	Initia	al release
. ,	aluate the result of wav	e length 200nm to 8	300nm.		
The LED package spece	The LED package specification as follows:				
	Manufacturer			Vf(V)	lf(mA)
EM3547				4.5-5.0V	50mA
Any report having not been signed by	v authorized approver, or having be	en altered without authorizati	on, or having not been stamped b	v the "Dedicate	d Testing/Inspection

Summary of testing

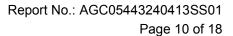
The sample tested complies with the requirements of EN 62471:2008 and which is classified as Exempt Group according to the requirements of EN 62471:2008.

	EN 62471		
Clause	Requirement – Test	Result	Verdict
4	Exposure Limits	Р	
4.1	General		Р
	The exposure limits in this standard is not less than 0,01 ms and not more than any 8-hour period and should be used as guides in the control of exposure		Р
	Detailed spectral data of a light source are generally required only if the luminance of the source exceeds 10 ⁴ cd·m ⁻²	see clause 4.3	Р
4.3	Hazard exposure limits		Р
4.3.1	Actinic UV hazard exposure limit for the skin and eye		Р
	The exposure limit for effective radiant exposure is $30 \text{ J} \cdot \text{m}^{-2}$ within any 8-hour period		Р
	To protect against injury of the eye or skin from ultraviolet radiation exposure produced by a broadband source, the effective integrated spectral irradiance , E _s , of the light source shall not exceed the levels defined by:		Р
	$E_{\rm s} \cdot t = \sum_{200}^{400} \sum_{t} E_{\lambda}(\lambda, t) \cdot S_{\rm UV}(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 30 \qquad \qquad J \cdot {\rm m}^{-2}$		Р
	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye or skin shall be computed by:		Р
	$t_{\max} = \frac{30}{E_{s}} s$		Р
4.3.2	Near-UV hazard exposure limit for eye	•	Р
	For the spectral region 315 nm to 400 nm (UV-A) the total radiant exposure to the eye shall not exceed $10000 \text{ J}\cdot\text{m}^{-2}$ for exposure times less than 1000 s. For exposure times greater than 1000 s (approximately 16 minutes) the UV-A irradiance for the unprotected eye, E_{UVA} , shall not exceed 10 W·m ⁻² .		Р
	The permissible time for exposure to ultraviolet radiation incident upon the unprotected eye for time less than 1000 s, shall be computed by:		N
	$t_{\max} \le \frac{10000}{E_{\text{UVA}}}$ s		N
4.3.3	Retinal blue light hazard exposure limit		Р

	EN 62471		
Clause	Requirement – Test	Result	Verdict
	To protect against retinal photochemical injury from chronic blue-light exposure, the integrated spectral radiance of the light source weighted against the blue-light hazard function, $B(\lambda)$, i.e., the blue-light weighted radiance , L_B , shall not exceed the levels defined by:		Р
	$L_{B} \cdot t = \sum_{300}^{700} \sum_{t} L_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 10^6 J \cdot m^{-2} \cdot sr^{-1}$		N
	$L_{\rm B} = \sum_{300}^{700} L_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 100 {\rm W} \cdot {\rm m}^{-2} \cdot {\rm sr}^{-1}$		Р
4.3.4	Retinal blue light hazard exposure limit - small source		N
	Thus the spectral irradiance at the eye E_{λ} , weighted against the blue-light hazard function $B(\lambda)$ shall not exceed the levels defined by:		Ν
	$E_{B} \cdot t = \sum_{300}^{700} \sum_{l} E_{\lambda}(\lambda, t) \cdot B(\lambda) \cdot \Delta t \cdot \Delta \lambda \le 100 \text{ J} \cdot \text{m}^{-2}$		Ν
	$E_{\rm B} = \sum_{300}^{700} E_{\lambda} \cdot B(\lambda) \cdot \Delta \lambda \le 1 {\rm W} \cdot {\rm m}^{-2}$		N
4.3.5	Retinal thermal hazard exposure limit		Р
	To protect against retinal thermal injury, the integrated spectral radiance of the light source, L_{λ} , weighted by the burn hazard weighting function $R(\lambda)$ (from Figure 4.2 and Table 4.2), i.e., the burn hazard weighted radiance, shall not exceed the levels defined by:		Р
	$L_{R} = \sum_{380}^{1400} L_{\lambda} \cdot \mathbf{R}(\lambda) \cdot \Delta \lambda \leq \frac{50000}{\alpha \cdot t^{0.25}} W \cdot m^{-2} \cdot sr^{-1}$	(10 µs ≤ t ≤ 10 s)	Р
4.3.6	Retinal thermal hazard exposure limit – weak visual stin	nulus	N
	For an infrared heat lamp or any near-infrared source where a weak visual stimulus is inadequate to activate the aversion response, the near infrared (780 nm to 1400 nm) radiance, L_{IR} , as viewed by the eye for exposure times greater than 10 s shall be limited to:		N
	$L_{\rm IR} = \sum_{780}^{1400} L_{\lambda} \cdot R(\lambda) \cdot \Delta \lambda \le \frac{6000}{\alpha} W \cdot m^{-2} \cdot {\rm sr}^{-1}$	t > 10 s	N
4.3.7	Infrared radiation hazard exposure limits for the eye		N
	The avoid thermal injury of the cornea and possible delayed effects upon the lens of the eye (cataractogenesis), ocular exposure to infrared radiation, E_{IR} , over the wavelength range 780 nm to 3000 nm, for times less than 1000 s, shall not exceed:		N

	EN 62471			
Clause	Requirement – Test	Result	Verdict	
	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 18000 \cdot t^{-0.75} \text{ W} \cdot \text{m}^{-2}$	t ≤ 1000 s	N	
	For times greater than 1000 s the limit becomes:		N	
	$E_{\rm IR} = \sum_{780}^{3000} E_{\lambda} \cdot \Delta \lambda \le 100 \qquad \rm W \cdot m^{-2}$	t > 1000 s	N	
4.3.8	Thermal hazard exposure limit for the skin		N	
	Visible and infrared radiant exposure (380 nm to 3000 nm) of the skin shall be limited to:		N	
	$E_{\mathrm{H}} \cdot t = \sum_{380}^{3000} \sum_{t} E_{\lambda}(\lambda, t) \cdot \Delta t \cdot \Delta \lambda \leq 20000 \cdot t^{0,25} \mathrm{J} \cdot \mathrm{m}^{-2}$		N	

5	MEASUREMENT OF LAMPS AND LAMP SYSTEMS	Р
5.1	Measurement conditions	Р
	Measurement conditions shall be reported as part of the evaluation against the exposure limits and the assignment of risk classification.	Р
5.1.1	Lamp ageing (seasoning)	N
	Seasoning of lamps shall be done as stated in the appropriate IEC lamp standard.	N
5.1.2	Test environment	Р
	For specific test conditions, see the appropriate IEC lamp standard or in absence of such standards, the appropriate national standards or manufacturer's recommendations.	Р
5.1.3	Extraneous radiation	Р
	Careful checks should be made to ensure that extraneous sources of radiation and reflections do not add significantly to the measurement results.	Р
5.1.4	Lamp operation	Р
	Operation of the test lamp shall be provided in accordance with:	Р
	the appropriate EN lamp standard, or	N
	the manufacturer's recommendation	Р
5.1.5	Lamp system operation	N
	The power source for operation of the test lamp shall be provided in accordance with:	N
	the appropriate EN standard, or	N



	EN 62471		
Clause	Requirement – Test	Result	Verdict
	the manufacturer's recommendation		N
5.2	Measurement procedure	Р	
5.2.1	Irradiance measurements		Р
	Minimum aperture diameter 7mm.		Р
	Maximum aperture diameter 50 mm.		Р
	The measurement shall be made in that position of the beam giving the maximum reading.		Р
	The measurement instrument is adequate calibrated.		Р
5.2.2	Radiance measurements		Р
5.2.2.1	Standard method		Р
	The measurements made with an optical system.		Р
	The instrument shall be calibrated to read in absolute radiant power per unit receiving area and per unit solid angle to acceptance averaged over the field of view of the instrument.		Р
5.2.2.2	Alternative method		N
	Alternatively to an imaging radiance set-up, an irradiance measurement set-up with a circular field stop placed at the source can be used to perform radiance measurements.		N
5.2.3	Measurement of source size		Р
	The determination of α , the angle subtended by a source, requires the determination of the 50% emission points of the source.		Р
5.2.4	Pulse width measurement for pulsed sources		N
	The determination of Δt , the nominal pulse duration of a source, requires the determination of the time during which the emission is > 50% of its peak value.		N
5.3	Analysis methods		Р
5.3.1	Weighting curve interpolations		N
	To standardize interpolated values, use linear interpolation on the log of given values to obtain intermediate points at the wavelength intervals desired.	see table 4.1	N
5.3.2	Calculations		Р
	The calculation of source hazard values shall be performed by weighting the spectral scan by the appropriate function and calculating the total weighted energy.		Р
5.3.3	Measurement uncertainty		Р

	EN 62471			
Clause	Requirement – Test	Result	Verdict	
	The quality of all measurement results must be quantified by an analysis of the uncertainty.	see Annex C in the norm	Р	

6	LAMP CLASSIFICATION		P
	For the purposes of this standard it was decided that the values shall be reported as follows:	see table 6.1	Р
	for lamps intended for general lighting service, the hazard values shall be reported as either irradiance or radiance values at a distance which produces an illuminance of 500 lux, but not at a distance less than 200 mm	200mm	Р
	for all other light sources, including pulsed lamp sources, the hazard values shall be reported at a distance of 200 mm		N
6.1	Continuous wave lamps		Р
6.1.1	Except Group		Р
	In the except group are lamps, which does not pose any photobiological hazard. The requirement is met by any lamp that does not pose:		Р
	 an actinic ultraviolet hazard (E_s) within 8-hours exposure (30000 s), nor 		Р
	 a near-UV hazard (E_{UVA}) within 1000 s, (about 16 min), nor 		Р
	 a retinal blue-light hazard (L_B) within 10000 s (about 2,8 h), nor 		Р
	- a retinal thermal hazard (L _R) within 10 s, nor		Р
	 an infrared radiation hazard for the eye (E_{IR}) within 1000 s 		Р
6.1.2	Risk Group 1 (Low-Risk)		N
	In this group are lamps, which exceeds the limits for the except group but that does not pose:		N
	 an actinic ultraviolet hazard (Es) within 10000 s, nor 		N
	– a near ultraviolet hazard (E _{UVA}) within 300 s, nor		N
	– a retinal blue-light hazard (L _B) within 100 s, nor		N
	– a retinal thermal hazard (L_R) within 10 s, nor		N
	 an infrared radiation hazard for the eye (E_{IR}) within 100 s 		N
	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal		N

EN 62471			
Clause	Requirement – Test	Result	Verdict
	hazard (L_{IR}), within 100 s are in Risk Group 1.		
6.1.3	Risk Group 2 (Moderate-Risk)		N
	This requirement is met by any lamp that exceeds the limits for Risk Group 1, but that does not pose:		N
	 an actinic ultraviolet hazard (E_s) within 1000 s exposure, nor 		N
	- a near ultraviolet hazard (E _{UVA}) within 100 s, nor		N
	 a retinal blue-light hazard (L_B) within 0,25 s (aversion response), nor 		N
	 a retinal thermal hazard (L_R) within 0,25 s (aversion response), nor 		N
	- an infrared radiation hazard for the eye (E_{IR}) within 10 s		N
	Lamps that emit infrared radiation without a strong visual stimulus and do not pose a near-infrared retinal hazard (L_{IR}), within 10 s are in Risk Group 2.		N
6.1.4	Risk Group 3 (High-Risk)	N	
	Lamps which exceed the limits for Risk Group 2 are in Group 3.		N
6.2	Pulsed lamps		N
	Pulse lamp criteria shall apply to a single pulse and to any group of pulses within 0,25 s.		N
	A pulsed lamp shall be evaluated at the highest nominal energy loading as specified by the manufacturer.		N
	The risk group determination of the lamp being tested shall be made as follows:		N
	 a lamp that exceeds the exposure limit shall be classified as belonging to Risk Group 3 (High-Risk) 		N
	 for single pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance does is below the EL shall be classified as belonging to the Exempt Group 		N
	 for repetitively pulsed lamps, a lamp whose weighted radiant exposure or weighted radiance dose is below the EL, shall be evaluated using the continuous wave risk criteria discussed in clause 6.1, using time averaged values of the pulsed emission 		N

Report No.: AGC05443240413SS01 Page 11 of 18

EN 62471

Clause Requirement - Test Result Verdict

e 4.1	Spectral w	eighting function for assessing	ultraviolet hazards for	skin and eye	
	elength [,] , nm	UV hazard function S _{υν} (λ)	Wavelength λ, nm	UV hazard function S _{uv} ()	
2	200	0,030	313*	0,006	
2	205	0,051	315	0,003	
2	210	0,075	316	0,0024	
2	215	0,095	317	0,0020	
2	220	0,120	318	0,0016	
2	225	0,150	319	0,0012	
2	230	0,190	320	0,0010	
2	235	0,240	322	0,00067	
2	240	0,300	323	0,00054	
2	245	0,360	325	0,00050	
2	250	0,430	328	0,00044	
2	54*	0,500	330	0,00041	
2	255	0,520	333*	0,00037	
2	260	0,650	335	0,00034	
2	265	0,810	340	0,00028	
2	270	1,000	345	0,00024	
2	275	0,960	350	0,00020	
2	80*	0,880	355	0,00016	
2	285	0,770	360	0,00013	
2	290	0,640	365*	0,00011	
2	295	0,540	370	0,000093	
2	.97*	0,460	375	0,00077	
3	300 0,300 380 0,000		0,00064		
303* 0,120 385 0,0		0,000053			
305 0,060		390	0,000044		
3	308	0,026	395	0,00036	
3	310	0,015	400	0,000030	

Wavelengths chosen are representative: other values should be obtained by logarithmic interpolation at intermediate wavelengths.

Emission lines of a mercury discharge spectrum.

Table 4.2	Spectral weighting functions for assessing retinal hazards from broadband optical sources							
v	Vavelength nm	Blue-light hazard function B (λ)	Burn hazard fund R (λ)	ction				
300		0,01						
305		0,01						
	310	0,01						
	315	0,01						

Report No.: AGC05443240413SS01 Page 12 of 18

		EN 62471		
Clause	Requirement – Test		Result	Verdict
	320	0,01		
	325	0,01		
	330	0,01		
	335	0,01		
	340	0,01		
	345	0,01		
	350	0,01		
	355	0,01		
	360	0,01		
	365	0,01		
	370	0,01		
	375	0,01		
	380	0,01		0,1
	385	0,013		0,13
	390	0,025		0,25
	395	0,05		0,5
	400	0,10		1,0
	405	0,20		2,0
	410	0,40		4,0
	415	0,80		8,0
	420	0,90		9,0
	425	0,95		9,5
	430	0,98		9,8
	435	1,00		10,0
	440	1,00		10,0
	445	0,97		9,7
	450	0,94		9,4
	455	0,90		9,0
	460	0,80		8,0
	465	0,70		7,0
	470	0,62		6,2
	475	0,55		5,5
	480	0,45		4,5
	485	0,40		4,0
	490	0,22		2,2
	495	0,16		1,6
	500-600	10 ^[(450-λ)/50]		1,0
	600-700	0,001		1,0
	700-1050			10 ^[(700-λ)/500]
	1050-1150			0,2
	1150-1200		C	,2·10 ^{0,02(1150-λ)}
	1200-1400			0,02

EN 62471							
Clause	Requirement – Test	Result	Verdict				

Table 5.4	Summary of the ELs for the surface of the skin or cornea (irradiance based values)							
Hazard Name	Relevant equation	Wavelength range nm	Exposure duration sec	Limiting aperture rad (deg)	EL in terms of irradian W•m ⁻²	ce		
Actinic UV skin & eye	$E_{S} = \sum E_{\lambda} \bullet S(\lambda) \bullet \Delta \lambda$	200 – 400	< 30000	1,4 (80)	30/t			
Eye UV-A	$E_{UVA} = \sum E_{\lambda} \bullet \Delta \lambda$	315 – 400	≤1000 >1000	1,4 (80)	10000/ 10	′t		
Blue-light small source	$E_{B} = \sum E_{\lambda} \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	≤100 >100	< 0,011	100/t 1,0			
Eye IR	$E_{IR} = \sum E_{\lambda} \bullet \Delta \lambda$	780 –3000	≤1000 >1000	1,4 (80)	18000/t 100	0,75		
Skin thermal	$E_{H} = \sum E_{\lambda} \bullet \Delta \lambda$	380 – 3000	< 10	2π sr	20000/t	0,75		

Table 5.5	Summary of the ELs for the retina (radiance based values)						
Hazard Name		Relevant equation	Wavelength range nm	Exposure duration sec	Field of view radians	EL in term constant radianc 1)	
Blue light		$L_B = \sum L_\lambda \bullet B(\lambda) \bullet \Delta \lambda$	300 – 700	0,25 – 10 10-100 100-10000 ≥ 10000	0,011•√(t/10) 0,011 0,0011•√t 0,1	10 ⁶ /t 10 ⁶ /t 10 ⁶ /t 100	
Retinal thermal		$L_{R} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	380 – 1400	< 0,25 0,25 – 10	0,0017 0,011•√(t/10)	50000/(α• 50000/(α•	, i
Retinal thermal (weak visual stimulus)		$L_{IR} = \sum L_{\lambda} \bullet R(\lambda) \bullet \Delta \lambda$	780 – 1400	> 10	0,011	6000/c	x

Report No.: AGC05443240413SS01 Page 14 of 18

Requirem			EN 62471								
Requirement – Test Result								Verdict			
Emission	limits for ri	sk groups o	groups of continuous wave lamps								
Action				Er	nission Me	asureme	nt				
spectru	Symbol	Units	Exe	empt	Low	risk	Mod	risk			
m			Limit	Result	Limit	Result	Limit	Result			
$S_{UV}(\lambda)$	Es	W•m⁻²	0.001		0,003		0,03				
	Euva	W∙m⁻²	10		33		100				
Β(λ)	L _B	W•m⁻ ²•sr⁻¹	100		10000		4000000				
Β(λ)	E _Β	W∙m⁻²	1.0*		1,0		400				
R(λ)	L _R	W•m⁻ ²•sr⁻¹	28000/α		28000/α		71000/α				
R(λ)	Lir	W∙m⁻ ²•sr⁻¹	6000/α		6000/α		6000/α				
	E _{IR}	W•m⁻²	100		570		3200				
	Action spectru Sυν(λ) B(λ) B(λ) R(λ)	Action spectru M Symbol Sυν(λ) Es Buv Euva B(λ) LB R(λ) LR R(λ) LIR Euva Euva	Action spectru mSymbolUnitsSUV(λ)EsW·m ⁻² EUVAW·m ⁻² W·m ⁻² B(λ)LBW·m ⁻² B(λ)EBW·m ⁻² R(λ)LRW·m ⁻² R(λ)LIRW·m ⁻² E(λ)LIRW·m ⁻² E(λ)EIRW·m ⁻²	Action spectru mSymbolUnitsExeSuv(λ)EsW•m ⁻² 0.001Suv(λ)EsW•m ⁻² 10EuvaW•m ⁻² 10B(λ)LBW•m ⁻² 100B(λ)EBW•m ⁻² 1.0*R(λ)LRW•m ⁻² 28000/ α R(λ)LIRW•m ⁻² 6000/ α EIRW•m ⁻² 1.00	Action spectru m Symbol Units Image: constraint of the symbol method of the symb	Action spectru m Symbol Units Emission Mean Suv(λ) Es W•m ⁻² 0.001 0,003 Suv(λ) Es W•m ⁻² 0.001 0,003 EuvA W•m ⁻² 10 33 B(λ) LB W•m ⁻² 100 10000 B(λ) LB W•m ⁻² 1.0* 1,0 B(λ) EB W•m ⁻² 1.0* 1,0 R(λ) LR W•m ⁻² 28000/α 28000/α R(λ) LIR W•m ⁻² 2100 28000/α R(λ) LR W•m ⁻² 21.0* 28000/α R(λ) LIR W•m ⁻² 100 570	Action spectru m Symbol Units Exempt Low risk Suv(λ) Es W*m² 0.001 0,003 Suv(λ) Es W*m² 10 0,003 EuvA W*m² 10 33 B(λ) LB $\frac{W*m²}{2*sr^1}$ 100 10000 B(λ) LB $\frac{W*m²}{2*sr^1}$ 1.0* 1,0 R(λ) LR $\frac{W*m²}{2*sr^1}$ 28000/α 28000/α R(λ) LR $\frac{W*m²}{2*sr^1}$ 6000/α 570	Action spectru m Symbol Units Image: constraint of the symbol matrix of the symb			

** Involves evaluation of non-GLS source

Report No.: AGC05443240413SS01 Page 15 of 18

	EN 62471						
	CENELEC COMMON MODIFICATIONS (EN)						
4	EXPOSURE LIMITS		Р				
	Contents of the whole Clause 4 of IEC 62471:2006 moved into a new informative Annex ZB						
	Clause 4 replaced by the following:		Р				
	Limits of the Artificial Optical Radiation Directive (2006/25/EC) have been applied instead of those fixed in IEC 62471:2006		Ρ				
4.1	General		Р				
	First paragraph deleted						

Table 6.1	Emission limits for risk groups of continuous wave lamps (based on EU Directive 2006/25/EC)									
	Action			Emission Measurement						
Risk	spectru	Symbol	Units	Ex	empt	Low	risk	Mod	risk	
	m			Limit	Result	Limit	Result	Limit	Result	
Actinic UV	Sυν(λ)	Es	W∙m⁻²	0.001	0.000E+00	0.003		0.03		
Near UV		Euva	W∙m⁻²	0.33	0.000E+00	33		100		
Blue light	Β(λ)	L _B	W∙m⁻ ²•sr⁻¹	100	2.731E+00	10000		4000000		
Blue light, small source	Β(λ)	E _B	W•m⁻²	0.01*		1,0		400		
Retinal thermal	R(λ)	L _R	W∙m⁻ ²•sr⁻¹	28000/α	3.417E+01	28000/α		7.100E+ 05		
Retinal thermal, weak	R(λ)	L _{IR}	W•m⁻ 3 am1	545000 0,0017≤ α≤ 0,011						
visual stimulus**			² •Sr ^{−1}	6000/α = 0,011≤ α ≤ 0,1						
IR radiation, eye		E _{IR}	W•m⁻²	100		570		3200		
* Small sour ** Involves e				1 radian. Av	veraging field o	of view at 10)000 s is 0,	1 radian.		

Attachment A Photos of product

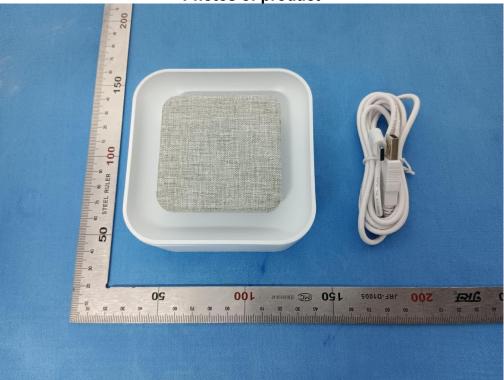


Fig.1– Overall view

Fig.2– Parts view

Fig.3– Parts view

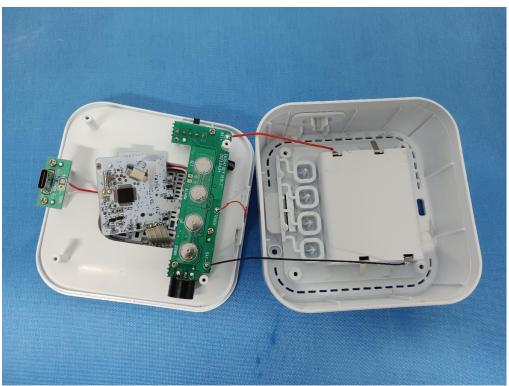


Fig.4– Parts view

Report No.: AGC05443240413SS01 Page 18 of 18

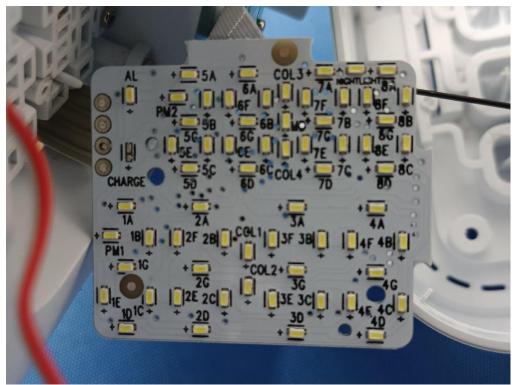


Fig.5- Parts view

----- End of Report -----

Conditions of Issuance of Test Reports

 All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd. (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
 Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.

3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

7. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.